
 

Incorporating rich features into Deep knowledge tracing 

1st Author Name 

Affiliation 

City, Country 

e-mail address 

2nd Author Name  

Affiliation 

City, Country 

e-mail address 

3rd Author Name  

Affiliation 

City, Country 

e-mail address 

 

ABSTRACT 

The desire to follow student learning within intelligent 

tutoring systems in near real time has led to the 

development of several models anticipating the correctness 

of the next item as students work through an assignment.  

Such models have included Performance Factors Analysis 

(PFA), Bayesian Knowledge Tracing (BKT), and more 

recently with developments in deep learning, Deep 

Knowledge Tracing (DKT).  This DKT model, based on the 

use of a recurrent neural network, exhibited promising 

results.  Thus far, however, the model has only considered 

the knowledge components of the problems and correctness 

as input, neglecting the breadth of other features collected 

by computer-based learning platforms.  This work seeks to 

improve upon the DKT model by incorporating more 

features at the problem-level.  With this higher dimensional 

input, an adaption to the original DKT model structure is 

also proposed, incorporating an auto-encoder network layer 

to convert the input into a low dimensional feature vector to 

reduce both the resource requirement and time needed to 

train.  Experiment results show that our adapted DKT 

model, observing more combinations of features, can 

effectively improve accuracy. 
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Tracing (DKT), Recurrent Neural Networks (RNN), Auto 

Encoders.  

 

1. INTRODUCTION 

Models that attempt to follow the progression of student 

learning often represent student knowledge as a latent 

variable. As students work on new problems, these models 

update their estimates of student knowledge based on the 

correctness of responses.. The problem emerges to be time 

series prediction, as student performance on previous items 

is indicative of future performance.  Models then use the 

series of questions a student has attempted previously and 

the correctness of each question to predict the student’s 

performance on a new problem. Two well-known models, 

Bayesian Knowledge tracing (BKT) [15] and performance 

factor analysis (PFA) [11] have been widely explored due 

to their ability to capture this progression of knowledge 

with reliable accuracy. Both of these models, exhibiting 

success in terms of predictive accuracy, use differing 

algorithms to estimate student knowledge.  BKT, for 

example, uses a Bayesian network to learn four parameters 

per knowledge component, or skill, while the PFA model 

uses a logistic regression over aggregated performance to 

determine performance for each skill. The concept to treat 

each skill individually is perhaps a leading factor in the 

success of these models, as they understand that students 

will exhibit different learning behaviors depending on 

content. 

Deep learning is an emerging approach which has proved to 

yield promising results in a range of areas including pattern 

recognition, natural language processing and image 

classification[18]. The “deep” aspect of deep learning refers 

to the multiple levels of transformation that occur between 

input nodes and output nodes; these levels are usually 

referred to as layers, with each layer consisting of numerous 

nodes. The hidden nodes are used to extract high level 

features from previous layers and pass that information on 

to the next layer. However, the features extracted by deep 

learning are largely uninterpretable due to the complexity. 

This complexity makes it infeasible to explain the meaning 

behind every parameter learned by the model, unlike BKT 

and PFA which attempt to incorporate interpretability with 

its estimates.  

Many deep learning algorithms like recurrent neural 

network (RNN) and convolutional neural networks (CNN) 

have been proposed in recent years to benefit machine 

learning systems with complex, yet more accurate 

representative models.  Such an attempt in the field of 

learning analytics is that of Deep Knowledge Tracing 

(DKT) [1].  Building from the promising results of that 

model, this work seeks to make better use of the complex 

nature of deep learning models to incorporate more features 

to improve predictive accuracy.  We also explore how other 

deep learning structures can help reduce these high 

dimensional inputs into smaller representative feature 

vectors. 



 

2. DEEP LEARNING IN EDUCATION 

Deep knowledge tracing (DKT), introduced by Piech et al. 

[2], applies a RNN for this educational data mining task of 

following the progression of student knowledge. Similar to 

BKT, this adaptation observes knowledge at both the skill 

level, observing which knowledge component is involved in 

the task, and the problem level, observing correctness of 

each problem. The input layer of the DKT model is 

described as an exercise-performance pair of a student, 

{(        ,       ), (        ,       ) … (      ,       )}, while 

the output layer is {               …         }. The term 

       refers to the feature combination of question (or skill) 

and correctness of student1 on a problem of skill 1.        

refers to the correctness of a problem from skill 1 for 

student 1. In other words, the skill and correctness of each 

item is used to predict the correctness of the next item, 

given that problem’s skill.  

The DKT algorithm uses a recurrent neural network to 

represent latent knowledge state, along with its temporal 

dynamics. As a student progresses through an assignment, it 

attempts to utilize information from previous timesteps, or 

problems, to make better inferences regarding future 

performance. A popular variant of RNN, also used in the 

DKT model, is that of long short-term memory (LSTM) 

networks.  The key difference of LSTMs to traditional 

RNNs is the internal node structure [14], that acts like a 

conveyor belt in determining how to modify information 

within each recurrent node. The LSTM variant uses three 

gates to remove or add information to the cell states, 

determining how much information to remember from 

previous timesteps and also how to combine that memory 

with information from the current timestep. 

The recurrent hidden nodes are trained to identify and retain 

the relevant aspects of the input history as it pertains to 

student performance. The appearance of DKT drew 

attention by the educational data mining community due to 

the claimed dramatic improvement over BKT, claiming 

about 25% gain in predictive performance using the 

ASSISTments 2009 benchmark dataset. At the 2016 

Educational Data Mining Conference, three papers [9, 13, 

and 17] were published to compare DKT with traditional 

probabilistic and statistical models. They argue that 

traditional models and variants still perform as well as this 

new method with better interpretability and explanatory 

power. 

Due to the recency of the DKT model, it is not as deeply 

researched as other established methods. We believe that 

DKT is a promising approach due to its comparable 

performance, and with the emergence of new neural 

network optimization algorithms, the structure has space for 

improvement. Thus far only question (or skill) and 

correctness are considered as input to the DKT model, but 

the network can easily consider more features. In this paper, 

we explore the inclusion of more features to improve the 

accuracy of prediction. However, the incorporation of new 

features can quickly increase the input layer dimensionality, 

requiring careful consideration to avoid model over fitting 

and also to ensure the feasibility of training such a model 

within reasonable hardware requirements. 

While a simple feed-forward neural network can be trained 

relatively quickly depending on the number of nodes and 

size of the dataset, RNNs are considerably more 

computationally expensive due to the comparatively larger 

number of parameters.  In such models fitting procedures 

often take hours or days to run on large data sets. For 

example, training a LSTM DKT model with 50 skills and 

200 hidden nodes needs to learn 250,850 parameters. In our 

environment, the training of DKT models on the 

ASSISTments 2009 benchmark dataset takes 3.5 minutes 

per epoch, equating to more than 14 hours when using a 5 

fold cross validation run over 50 epochs. In contrast, BKT 

is able to train on the same dataset within 10 minutes.  

In this way, training time and the number of parameters are 

considered as an important metric of comparison; such 

models need to provide significant gains to predictive 

performance to justify their usage over simpler models.  To 

this extent, the network structure of DKT may benefit from 

reduced dimensionality, particularly if this can be achieved 

without sacrificing performance. An auto-encoder [7] is one 

such approach to this problem.  Auto-encoders are 

multilayer neural networks with a small central layer that 

can convert high dimensional data to low dimensional 

representative encodings that can be used to reconstruct the 

high dimensional input vectors; in this way dimensionality 

is reduced without the loss of important information. This 

technique is an unsupervised learning algorithm that applies 

backpropagation, much like a traditional feed-forward 

neural network, observing the input vector as the training 

output. Using a smaller number of nodes in the hidden 

layer, therefore, finds a smaller number of values that can 

reconstruct the input. Once trained, the output layer can be 

removed, and the hidden layer can connect to another 

network layer.  Auto-encoders may be stacked in this way 

but each layer must be trained one at a time. Like other 

neural network, the gradient descent method is used to train 

the weight values of the parameters.   



 

 

Figure 1.  One layer auto-encoder neural network; the 

weights of the decoder is simply the matrix transpose of the 

encoders. The hidden layer becomes a dense feature vector 

representative of the input layer. 

 

3. IMPROVING DKT WITH MORE FEATURES 

Intelligent tutoring systems often collect additional features 

about the interaction of students including information on 

problems, instructional aids, and time spent on individual 

tasks. Models and algorithms that make use of this 

additional information have been proposed. For example, 

hint usage and the number of attempts need to find the 

problem answer are adopted to predict the performance in 

the sequence of actions (SOA) model [8]; partial credit 

history acquired based on the number of hints used and the 

number of attempts are used to predict the probability of 

that students getting the next question correct [7]. 

As previously described, it is easy to incorporate useful 

information such as this into the input layer of a neural 

network. However, the key consideration is how feature 

engineering is performed on these features. Feature 

engineering played a vital role for the NTU team [6] who 

won the KDD competition in 2010. They incorporated a 

large number of features and cross-features into a vector-

space model and then trained a traditional classifier. They 

also identified some useful feature combinations to improve 

the performance.  Cross features were used in the original 

DKT work as well, utilizing a one-hot encoding to represent 

an correct and incorrect response for each skill separately as 

a vector of 2 times the number of skills; alternatively, such 

information could be represented separately, with a one-hot 

encoding representing skills, and just one binary metric to 

indicate correctness equating to a vector of the number of 

skills plus 1. In wide-and-deep learning proposed by 

Google [16], sparse features and cross features are selected 

for wide part, while the continuous columns and the 

embedding dimension for each categorical column are 

selected for deep part. These exemplary models use the 

engineering of features to improve model accuracy helping 

to motivate the methodology of this work. 

3.1 Feature process 

In order to train the RNN model on student-tutor interaction 

data, the information must be converted into a sequence of 

fixed-length input vectors. Several features are selected for 

our modeling experiment they are exercise (skill) tag, 

correctness, time (the time in seconds before the student's 

first response), hint usage (total number of hints requested 

by the student), attempt count (the number of attempts 

made to answer correctly on this problem), and problem 

view (total number of times the student encountered the 

problem so far). The exercise tag feature is used to identify 

the content of a problem, acting as the skill-level tag. In 

different data sets, the skill level tag can exhibit differing 

representations, described by either a numeric skill id or the 

name of the knowledge component.  

Numerical features like time, hint usage, attempt count and 

problem views can be bucketed into categorical features 

which can be used to construct cross features in order to 

reduce the complexity of the model. This process simplifies 

the input without losing much information, as small 

difference in numeric values is often less important than 

large differences. For example, if a student finishes exercise 

a within 10 seconds while the other student is 300 seconds 

in the same exercise, the time difference represents their 

different mastery in exercise. Meanwhile, comparing a 

student who finishes in 10 seconds to a student who finishes 

in 11 seconds demonstrates similar, if not arguably the 

same level of understanding. Bucketing still captures this 

information while significantly reducing model complexity. 

The numeric features in this paper are bucketed across all 

skills and the result is represented by a one-hot encoding.   

Cross features such as the tuple of exercise and correctness, 

are represented as one integer represented by a one-hot 

encoder. The advantage of using cross features has been 

shown to improve model performance [6] while models 

representing features separately exhibit degraded 

performance [2]. However, the disadvantage of using cross 

features is the rapid increase of the dimensionality of the 

input vector. As the dimensionality increases, it is hard for 

the model to converge to the global optimal. At the same 

time, computational resources may become exhausted due 

to the large number of parameters. Dimensionality 

reduction, and the extraction of key features, is critical to 

guarantee the running of such models. Here, an auto-

encoder is used to accomplish this task. In our experiment, 

the dimension is successfully reduced to a quarter of the 



 

input size. We train the initial weights using an auto-

encoder, and hold them constant while training the 

remainder of the model.  

3.2 Model 

 

Figure 2 Feature concatenation 

The input vector of our model is constructed by 

concatenating one-hot encodings for separate features as 

illustrated in figure 2, where   represents the resulting input 

vector of each student exercise. The term    refers to the 

exercise tag, while     refers to correctness, and     
represents time before the first response. Concatenation is 

described in the formulas below. 

                
             

         (1) 

                             (2) 

In these,    is the one-hot encoder format,       is the cross 

feature, and the  operator is used to denote concatenation, 

not addition in (1). In (2), 1 is added in the expression due 

to the unincluded exercise.  

 

Figure 3 A representation of the Deep Knowledge Tracing 

model with more features 

Figure 3 depicts the resulting model representation utilizing 

an auto-encoder layer to support the added features. In 

figure 3,   
  represents the feature vector extracted from    

by auto-encoder; after training, this is simply the output of 

the hidden layer for each input vector. The gray arrows 

mean that weights between the two layers are held constant, 

so the auto-encoder is trained separately in advance. From 

our experiments, we noticed that the fine tuning of auto-

encoder weights, if trained with the RNN together, would 

lead to over fitting due to the increase of parameters. 

Therefore, the pre-trained weights in encoder are fixed to 

prevent over fitting.  

  
                         (3) 

           
                             (4) 

                                       (5) 

The model predicts performance in every exercise but just 

one prediction is selected at each time step because just one 

label exists at that time. The loss function was defined to 

use cross-entropy, as is common in other RNN models. 

4. DATASETS AND ENVIRONMENT 

Three educational datasets are tested in this paper. Each of 

these datasets comes from a system in which students 

interact with an intelligent tutor system for math content. 

Area under the curve (AUC) and r-squared metrics are 

measured for each. The original DKT model with inputs 

that include only exercise tag and correctness is used as a 

model for comparison. Since it is a time-series algorithm, 

students whose records are less than 2 are not considered.
1
 

4.1 ASSISTments 2009-2010 Data Sets 

ASSISTments is a computer-based learning system that 

simultaneously teaches and assesses students. This dataset 

was gathered from ASSISTments skill builder problem sets 

[1], which are assignments in which a student works on 

similar questions until he/she can correctly answer n 

consecutive problems correctly (where n is usually 3). After 

completion, students do not commonly rework the same 

skill. Xiong et al [17] discovered three issues that have 

unintentionally inflated the performance of DKT in the 

original version, so the updated version of this dataset is 

adopted here. 

Unlike other datasets, the records of a student may not be 

consecutive. That is why some previous works [2] report 

15,391 students while others [17] report 4,217. In our 

model, all records that belong to one student are 

concatenated. The exercise tag is defined as the skill id. 

                                                           
1
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In order to simplify the model and use cross features 

between time and others, the time is bucketed according to 

boundaries [-1, 60, 300, 1200, 3600, INF]. The boundary of 

hint count is defined as [-1, 0, 2, 4, INF], and [-1, 1, 20, 

100, INF] for attempt count.  

After preprocessing, this dataset consists of 4,217 students, 

124 exercise tags and 338,000 records in total. 

4.2 ASSISTments 2014-2015 Data Sets 

In addition to the 2009-2010 skill builder set we felt it 

appropriate to include a more recent representation of 

student data within the ASSISTments platform.. We also 

used another dataset from ASSISTments that covers student 

response records from the 2014-2015 school years. 

The process of feature processing with the exception of 

handling skill ids in this datasets is same as in the previous 

dataset. Unlike the ASSISTments 2009 dataset, some 

assignments have no mapped skill id so use the sequence id 

to represent skill id directly. Since the sequence level is 

finer than skill level, this process would introduce the noise 

to the dataset. The new skill id is mapped to the same 

pattern.  

After pre-processing, the dataset consists of 19,103 

students, 85 exercise tags, and 707,866 records.  

4.3 KDD Cup 2010 Data Sets 

KDD Cup 2010 is an education data mining competition 

organized by an ACM Special Interest Group on 

Knowledge Discovery and Data Mining (KDD) to predict 

student algebraic problem performance given information 

regarding past performance. The dataset came from 

Carnegie Learning’s Cognitive Tutor in Algebra from years 

2005-2009. 

Unlike the ASSISTments platform, the Cognitive Algebra 

Tutor is part of an integrated curriculum and has more 

support for the learner during the problem-solving process. 

It provides a much finer representation of the concepts 

assessed by an individual item. Each step a student takes to 

answer problem is counted as a separate interaction, with 

each step potentially assessing different knowledge 

components (KCs). We use each interaction (step) as the 

finest problem for prediction, over 438 knowledge 

components representing skill. The exercise tag is a 

numerated knowledge component derived from the text 

description. A skill composed of several sub-components is 

considered as a separate knowledge component. Time is 

bucketed according to boundaries [-1, 10, 60, 150, 300, 

INF]. Hint usage is bounded by [-1, 2, 5, 10, INF]. As there 

is no attempt count field in this dataset, problem view is 

instead used and bucketed according the boundaries [-1, 2, 

5, 10, INF]. 

After processing, the data set consist of 574 students, 438 

exercise tags and 809,684 records.  

4.4 Environment 

For replicability, the running environment is reported as the 

following: Ubuntu 14.04, i5600 processor, 16G RAM, GTX 

1070 (8G) graphics. The models were written with 

Tensorflow 0.10 using Python 3.4.  

From our experiment, we find that LSTM has better 

performance than a traditional RNN and another variant, 

GRU, so only LSTM is reported for comparison. Similar to 

the DKT model, 200 hidden nodes are used.  In order to 

prevent over fitting, dropout is applied to   , when 

computing   
 , and when computing   , but not in the 

computation of      . The dropout probability is set as 0.6. 

Binary cross entropy is the training objective which is 

trained by stochastic gradient descent on mini batches. The 

batch size for ASSISTments 2009 and 2014 is 30, while 

KDD is 5 because of the fewer number of students.  

5. RESULT 

The prediction is evaluated in terms of Area under curve 

(AUC) and the square of Pearson correlation (r2). 

Experiment undergoes 5-fold student level cross validation. 

There are a lot of possible feature and cross feature 

selection methods, but here we just explore few of them.  

AUC and r2 provide robust metrics for evaluation 

predictions where the value being predicted is either a 0 or 

1 also represents different information on modeling 

performance. An AUC of 0.50 always represents the scored 

achievable by random chance. A higher AUC score 

represents higher accuracy. r2 is the square of Pearson 

correlation coefficient between the observed and predicted 

values of dependent variable.  

Table1. AUC results 

Model 2009 2014 KDD 

DKT: exercise/correct 0.829 0.714 0.799 

DKT +’ time/correct 0.857 0.725 0.806 

AE(DKT +’ time/correct) 0.855 0.721 0.803 

DKT +’ time/correct +’ time 

+’ hint +’ attempt 0.859 0.728 0.808 

AE(DKT +’ time/correct +’ 

time +’ hint +’ attempt) 0.857 0.716 0.794 

AE(DKT +’ time/correct +’ 

exercise/time +’ time +’ hint 

+’ attempt) 0.863 0.731 0.808 



 

Table1. The results of each of the explored models. The +’ 

operator denotes concatenation. The attempt feature in 

KDD data refers to the problem view feature. 

Table2. R2 results 

Model 2009 2014 KDD 

DKT: exercise/correct 0.323 0.115 0.234 

DKT +’ time/correct 0.387 0.129 0.245 

AE(DKT +’ time/correct) 0.387 0.124 0.239 

DKT +’ time/correct +’ time + 

hint +’ attempt 0.388 0.133 0.250 

AE(DKT +’ time/correct +’ 

time +’ hint +’ attempt) 0.393 0.119 0.221 

AE(DKT +’ time/correct +’ 

exercise/time +’ time +’ hint 

+’ attempt) 0.403 0.135 0.250 

On all three datasets, models with incorporated features 

outperform the original DKT model. In the ASSISTments 

2009 dataset, AUC value is improved to 0.857 from 0.829 

after adding the cross feature of exercise and time. 

However, the AUC value just increases 0.2% when adding 

more features such as time, hint usage and attempt count 

into the input vectors. Even adding a cross feature of 

exercise and time shows no further improvement.  

The adoption of the auto-encoder when compared to models 

using the same features shows degraded performance of 

about 0.2%. In the ASSISTments 2014 dataset, it decreases 

to 0.716 from 0.728 while 0.808 to 0.794 in KDD data set. 

However, the auto-encoder is essential if more features are 

to be considered. For example, the input dimension of the 

last model, AE(DKT +’ time/correct +’ exercise/time +’ 

time +’ hint +’ attempt), in KDD dataset is 3,079, which 

exhausted the GPU resources in our environment without 

an auto-encoder even when using small batch sizes. From 

the above results, the improvement of prediction is mainly 

contributed by incorporation of cross features. 

7. CONCLUSION 

The feature transformation and feature combination, when 

properly selected, can be used to improve the prediction 

accuracy. Although the parameters are difficult to interpret, 

such RNN models are adopted due to the performance 

gains. 

The improvement here is attributed to the incorporation of 

cross features. The auto-encoder allows for the support of 

larger input vectors, making it possible to explore such 

combinations represented in one-hot encodings. 

The work of extending these models has several potential 

directions to pursue. One such direction can explore even 

more features, engineered in different manners, such as 

tokening the words of knowledge components [6] for 

different exercise representations. Similarly, a wide and 

deep approach [16] can be explored in how the features are 

represented within model training.  

The numerical data like time and hint usage can also be 

revisited in future work. Bucketed according to the 

distribution within each exercise rather than across all 

exercises will likely improve the representation of those 

features. For example, because skill B is harder than skill 

A, most students may answer skill A in 20 seconds while 

the same student requires 300 seconds in skill B.  

Because of flexible structure of deep learning, another 

research direction is to use similar RNN model structures to 

make other predictions regarding concepts like wheel 

spinning [4], student dropout, or hint usage.   
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