

Incorporating rich features into Deep knowledge tracing

1st Author Name

Affiliation

City, Country

e-mail address

2nd Author Name

Affiliation

City, Country

e-mail address

3rd Author Name

Affiliation

City, Country

e-mail address

ABSTRACT

The desire to follow student learning within intelligent

tutoring systems in near real time has led to the

development of several models anticipating the correctness

of the next item as students work through an assignment.

Such models have included Performance Factors Analysis

(PFA), Bayesian Knowledge Tracing (BKT), and more

recently with developments in deep learning, Deep

Knowledge Tracing (DKT). This DKT model, based on the

use of a recurrent neural network, exhibited promising

results. Thus far, however, the model has only considered

the knowledge components of the problems and correctness

as input, neglecting the breadth of other features collected

by computer-based learning platforms. This work seeks to

improve upon the DKT model by incorporating more

features at the problem-level. With this higher dimensional

input, an adaption to the original DKT model structure is

also proposed, incorporating an auto-encoder network layer

to convert the input into a low dimensional feature vector to

reduce both the resource requirement and time needed to

train. Experiment results show that our adapted DKT

model, observing more combinations of features, can

effectively improve accuracy.

Keywords

Knowledge Tracing, Deep Learning, Deep Knowledge

Tracing (DKT), Recurrent Neural Networks (RNN), Auto

Encoders.

1. INTRODUCTION

Models that attempt to follow the progression of student

learning often represent student knowledge as a latent

variable. As students work on new problems, these models

update their estimates of student knowledge based on the

correctness of responses.. The problem emerges to be time

series prediction, as student performance on previous items

is indicative of future performance. Models then use the

series of questions a student has attempted previously and

the correctness of each question to predict the student’s

performance on a new problem. Two well-known models,

Bayesian Knowledge tracing (BKT) [15] and performance

factor analysis (PFA) [11] have been widely explored due

to their ability to capture this progression of knowledge

with reliable accuracy. Both of these models, exhibiting

success in terms of predictive accuracy, use differing

algorithms to estimate student knowledge. BKT, for

example, uses a Bayesian network to learn four parameters

per knowledge component, or skill, while the PFA model

uses a logistic regression over aggregated performance to

determine performance for each skill. The concept to treat

each skill individually is perhaps a leading factor in the

success of these models, as they understand that students

will exhibit different learning behaviors depending on

content.

Deep learning is an emerging approach which has proved to

yield promising results in a range of areas including pattern

recognition, natural language processing and image

classification[18]. The “deep” aspect of deep learning refers

to the multiple levels of transformation that occur between

input nodes and output nodes; these levels are usually

referred to as layers, with each layer consisting of numerous

nodes. The hidden nodes are used to extract high level

features from previous layers and pass that information on

to the next layer. However, the features extracted by deep

learning are largely uninterpretable due to the complexity.

This complexity makes it infeasible to explain the meaning

behind every parameter learned by the model, unlike BKT

and PFA which attempt to incorporate interpretability with

its estimates.

Many deep learning algorithms like recurrent neural

network (RNN) and convolutional neural networks (CNN)

have been proposed in recent years to benefit machine

learning systems with complex, yet more accurate

representative models. Such an attempt in the field of

learning analytics is that of Deep Knowledge Tracing

(DKT) [1]. Building from the promising results of that

model, this work seeks to make better use of the complex

nature of deep learning models to incorporate more features

to improve predictive accuracy. We also explore how other

deep learning structures can help reduce these high

dimensional inputs into smaller representative feature

vectors.

2. DEEP LEARNING IN EDUCATION

Deep knowledge tracing (DKT), introduced by Piech et al.

[2], applies a RNN for this educational data mining task of

following the progression of student knowledge. Similar to

BKT, this adaptation observes knowledge at both the skill

level, observing which knowledge component is involved in

the task, and the problem level, observing correctness of

each problem. The input layer of the DKT model is

described as an exercise-performance pair of a student,

{(,), (,) … (,)}, while

the output layer is { … }. The term

 refers to the feature combination of question (or skill)

and correctness of student1 on a problem of skill 1.

refers to the correctness of a problem from skill 1 for

student 1. In other words, the skill and correctness of each

item is used to predict the correctness of the next item,

given that problem’s skill.

The DKT algorithm uses a recurrent neural network to

represent latent knowledge state, along with its temporal

dynamics. As a student progresses through an assignment, it

attempts to utilize information from previous timesteps, or

problems, to make better inferences regarding future

performance. A popular variant of RNN, also used in the

DKT model, is that of long short-term memory (LSTM)

networks. The key difference of LSTMs to traditional

RNNs is the internal node structure [14], that acts like a

conveyor belt in determining how to modify information

within each recurrent node. The LSTM variant uses three

gates to remove or add information to the cell states,

determining how much information to remember from

previous timesteps and also how to combine that memory

with information from the current timestep.

The recurrent hidden nodes are trained to identify and retain

the relevant aspects of the input history as it pertains to

student performance. The appearance of DKT drew

attention by the educational data mining community due to

the claimed dramatic improvement over BKT, claiming

about 25% gain in predictive performance using the

ASSISTments 2009 benchmark dataset. At the 2016

Educational Data Mining Conference, three papers [9, 13,

and 17] were published to compare DKT with traditional

probabilistic and statistical models. They argue that

traditional models and variants still perform as well as this

new method with better interpretability and explanatory

power.

Due to the recency of the DKT model, it is not as deeply

researched as other established methods. We believe that

DKT is a promising approach due to its comparable

performance, and with the emergence of new neural

network optimization algorithms, the structure has space for

improvement. Thus far only question (or skill) and

correctness are considered as input to the DKT model, but

the network can easily consider more features. In this paper,

we explore the inclusion of more features to improve the

accuracy of prediction. However, the incorporation of new

features can quickly increase the input layer dimensionality,

requiring careful consideration to avoid model over fitting

and also to ensure the feasibility of training such a model

within reasonable hardware requirements.

While a simple feed-forward neural network can be trained

relatively quickly depending on the number of nodes and

size of the dataset, RNNs are considerably more

computationally expensive due to the comparatively larger

number of parameters. In such models fitting procedures

often take hours or days to run on large data sets. For

example, training a LSTM DKT model with 50 skills and

200 hidden nodes needs to learn 250,850 parameters. In our

environment, the training of DKT models on the

ASSISTments 2009 benchmark dataset takes 3.5 minutes

per epoch, equating to more than 14 hours when using a 5

fold cross validation run over 50 epochs. In contrast, BKT

is able to train on the same dataset within 10 minutes.

In this way, training time and the number of parameters are

considered as an important metric of comparison; such

models need to provide significant gains to predictive

performance to justify their usage over simpler models. To

this extent, the network structure of DKT may benefit from

reduced dimensionality, particularly if this can be achieved

without sacrificing performance. An auto-encoder [7] is one

such approach to this problem. Auto-encoders are

multilayer neural networks with a small central layer that

can convert high dimensional data to low dimensional

representative encodings that can be used to reconstruct the

high dimensional input vectors; in this way dimensionality

is reduced without the loss of important information. This

technique is an unsupervised learning algorithm that applies

backpropagation, much like a traditional feed-forward

neural network, observing the input vector as the training

output. Using a smaller number of nodes in the hidden

layer, therefore, finds a smaller number of values that can

reconstruct the input. Once trained, the output layer can be

removed, and the hidden layer can connect to another

network layer. Auto-encoders may be stacked in this way

but each layer must be trained one at a time. Like other

neural network, the gradient descent method is used to train

the weight values of the parameters.

Figure 1. One layer auto-encoder neural network; the

weights of the decoder is simply the matrix transpose of the

encoders. The hidden layer becomes a dense feature vector

representative of the input layer.

3. IMPROVING DKT WITH MORE FEATURES

Intelligent tutoring systems often collect additional features

about the interaction of students including information on

problems, instructional aids, and time spent on individual

tasks. Models and algorithms that make use of this

additional information have been proposed. For example,

hint usage and the number of attempts need to find the

problem answer are adopted to predict the performance in

the sequence of actions (SOA) model [8]; partial credit

history acquired based on the number of hints used and the

number of attempts are used to predict the probability of

that students getting the next question correct [7].

As previously described, it is easy to incorporate useful

information such as this into the input layer of a neural

network. However, the key consideration is how feature

engineering is performed on these features. Feature

engineering played a vital role for the NTU team [6] who

won the KDD competition in 2010. They incorporated a

large number of features and cross-features into a vector-

space model and then trained a traditional classifier. They

also identified some useful feature combinations to improve

the performance. Cross features were used in the original

DKT work as well, utilizing a one-hot encoding to represent

an correct and incorrect response for each skill separately as

a vector of 2 times the number of skills; alternatively, such

information could be represented separately, with a one-hot

encoding representing skills, and just one binary metric to

indicate correctness equating to a vector of the number of

skills plus 1. In wide-and-deep learning proposed by

Google [16], sparse features and cross features are selected

for wide part, while the continuous columns and the

embedding dimension for each categorical column are

selected for deep part. These exemplary models use the

engineering of features to improve model accuracy helping

to motivate the methodology of this work.

3.1 Feature process

In order to train the RNN model on student-tutor interaction

data, the information must be converted into a sequence of

fixed-length input vectors. Several features are selected for

our modeling experiment they are exercise (skill) tag,

correctness, time (the time in seconds before the student's

first response), hint usage (total number of hints requested

by the student), attempt count (the number of attempts

made to answer correctly on this problem), and problem

view (total number of times the student encountered the

problem so far). The exercise tag feature is used to identify

the content of a problem, acting as the skill-level tag. In

different data sets, the skill level tag can exhibit differing

representations, described by either a numeric skill id or the

name of the knowledge component.

Numerical features like time, hint usage, attempt count and

problem views can be bucketed into categorical features

which can be used to construct cross features in order to

reduce the complexity of the model. This process simplifies

the input without losing much information, as small

difference in numeric values is often less important than

large differences. For example, if a student finishes exercise

a within 10 seconds while the other student is 300 seconds

in the same exercise, the time difference represents their

different mastery in exercise. Meanwhile, comparing a

student who finishes in 10 seconds to a student who finishes

in 11 seconds demonstrates similar, if not arguably the

same level of understanding. Bucketing still captures this

information while significantly reducing model complexity.

The numeric features in this paper are bucketed across all

skills and the result is represented by a one-hot encoding.

Cross features such as the tuple of exercise and correctness,

are represented as one integer represented by a one-hot

encoder. The advantage of using cross features has been

shown to improve model performance [6] while models

representing features separately exhibit degraded

performance [2]. However, the disadvantage of using cross

features is the rapid increase of the dimensionality of the

input vector. As the dimensionality increases, it is hard for

the model to converge to the global optimal. At the same

time, computational resources may become exhausted due

to the large number of parameters. Dimensionality

reduction, and the extraction of key features, is critical to

guarantee the running of such models. Here, an auto-

encoder is used to accomplish this task. In our experiment,

the dimension is successfully reduced to a quarter of the

input size. We train the initial weights using an auto-

encoder, and hold them constant while training the

remainder of the model.

3.2 Model

Figure 2 Feature concatenation

The input vector of our model is constructed by

concatenating one-hot encodings for separate features as

illustrated in figure 2, where represents the resulting input

vector of each student exercise. The term refers to the

exercise tag, while refers to correctness, and
represents time before the first response. Concatenation is

described in the formulas below.

 (1)

 (2)

In these, is the one-hot encoder format, is the cross

feature, and the operator is used to denote concatenation,

not addition in (1). In (2), 1 is added in the expression due

to the unincluded exercise.

Figure 3 A representation of the Deep Knowledge Tracing

model with more features

Figure 3 depicts the resulting model representation utilizing

an auto-encoder layer to support the added features. In

figure 3,
 represents the feature vector extracted from

by auto-encoder; after training, this is simply the output of

the hidden layer for each input vector. The gray arrows

mean that weights between the two layers are held constant,

so the auto-encoder is trained separately in advance. From

our experiments, we noticed that the fine tuning of auto-

encoder weights, if trained with the RNN together, would

lead to over fitting due to the increase of parameters.

Therefore, the pre-trained weights in encoder are fixed to

prevent over fitting.

 (3)

 (4)

 (5)

The model predicts performance in every exercise but just

one prediction is selected at each time step because just one

label exists at that time. The loss function was defined to

use cross-entropy, as is common in other RNN models.

4. DATASETS AND ENVIRONMENT

Three educational datasets are tested in this paper. Each of

these datasets comes from a system in which students

interact with an intelligent tutor system for math content.

Area under the curve (AUC) and r-squared metrics are

measured for each. The original DKT model with inputs

that include only exercise tag and correctness is used as a

model for comparison. Since it is a time-series algorithm,

students whose records are less than 2 are not considered.
1

4.1 ASSISTments 2009-2010 Data Sets

ASSISTments is a computer-based learning system that

simultaneously teaches and assesses students. This dataset

was gathered from ASSISTments skill builder problem sets

[1], which are assignments in which a student works on

similar questions until he/she can correctly answer n

consecutive problems correctly (where n is usually 3). After

completion, students do not commonly rework the same

skill. Xiong et al [17] discovered three issues that have

unintentionally inflated the performance of DKT in the

original version, so the updated version of this dataset is

adopted here.

Unlike other datasets, the records of a student may not be

consecutive. That is why some previous works [2] report

15,391 students while others [17] report 4,217. In our

model, all records that belong to one student are

concatenated. The exercise tag is defined as the skill id.

1
 https://github.com/lzhang6/DKT-extension

In order to simplify the model and use cross features

between time and others, the time is bucketed according to

boundaries [-1, 60, 300, 1200, 3600, INF]. The boundary of

hint count is defined as [-1, 0, 2, 4, INF], and [-1, 1, 20,

100, INF] for attempt count.

After preprocessing, this dataset consists of 4,217 students,

124 exercise tags and 338,000 records in total.

4.2 ASSISTments 2014-2015 Data Sets

In addition to the 2009-2010 skill builder set we felt it

appropriate to include a more recent representation of

student data within the ASSISTments platform.. We also

used another dataset from ASSISTments that covers student

response records from the 2014-2015 school years.

The process of feature processing with the exception of

handling skill ids in this datasets is same as in the previous

dataset. Unlike the ASSISTments 2009 dataset, some

assignments have no mapped skill id so use the sequence id

to represent skill id directly. Since the sequence level is

finer than skill level, this process would introduce the noise

to the dataset. The new skill id is mapped to the same

pattern.

After pre-processing, the dataset consists of 19,103

students, 85 exercise tags, and 707,866 records.

4.3 KDD Cup 2010 Data Sets

KDD Cup 2010 is an education data mining competition

organized by an ACM Special Interest Group on

Knowledge Discovery and Data Mining (KDD) to predict

student algebraic problem performance given information

regarding past performance. The dataset came from

Carnegie Learning’s Cognitive Tutor in Algebra from years

2005-2009.

Unlike the ASSISTments platform, the Cognitive Algebra

Tutor is part of an integrated curriculum and has more

support for the learner during the problem-solving process.

It provides a much finer representation of the concepts

assessed by an individual item. Each step a student takes to

answer problem is counted as a separate interaction, with

each step potentially assessing different knowledge

components (KCs). We use each interaction (step) as the

finest problem for prediction, over 438 knowledge

components representing skill. The exercise tag is a

numerated knowledge component derived from the text

description. A skill composed of several sub-components is

considered as a separate knowledge component. Time is

bucketed according to boundaries [-1, 10, 60, 150, 300,

INF]. Hint usage is bounded by [-1, 2, 5, 10, INF]. As there

is no attempt count field in this dataset, problem view is

instead used and bucketed according the boundaries [-1, 2,

5, 10, INF].

After processing, the data set consist of 574 students, 438

exercise tags and 809,684 records.

4.4 Environment

For replicability, the running environment is reported as the

following: Ubuntu 14.04, i5600 processor, 16G RAM, GTX

1070 (8G) graphics. The models were written with

Tensorflow 0.10 using Python 3.4.

From our experiment, we find that LSTM has better

performance than a traditional RNN and another variant,

GRU, so only LSTM is reported for comparison. Similar to

the DKT model, 200 hidden nodes are used. In order to

prevent over fitting, dropout is applied to , when

computing
 , and when computing , but not in the

computation of . The dropout probability is set as 0.6.

Binary cross entropy is the training objective which is

trained by stochastic gradient descent on mini batches. The

batch size for ASSISTments 2009 and 2014 is 30, while

KDD is 5 because of the fewer number of students.

5. RESULT

The prediction is evaluated in terms of Area under curve

(AUC) and the square of Pearson correlation (r2).

Experiment undergoes 5-fold student level cross validation.

There are a lot of possible feature and cross feature

selection methods, but here we just explore few of them.

AUC and r2 provide robust metrics for evaluation

predictions where the value being predicted is either a 0 or

1 also represents different information on modeling

performance. An AUC of 0.50 always represents the scored

achievable by random chance. A higher AUC score

represents higher accuracy. r2 is the square of Pearson

correlation coefficient between the observed and predicted

values of dependent variable.

Table1. AUC results

Model 2009 2014 KDD

DKT: exercise/correct 0.829 0.714 0.799

DKT +’ time/correct 0.857 0.725 0.806

AE(DKT +’ time/correct) 0.855 0.721 0.803

DKT +’ time/correct +’ time

+’ hint +’ attempt 0.859 0.728 0.808

AE(DKT +’ time/correct +’

time +’ hint +’ attempt) 0.857 0.716 0.794

AE(DKT +’ time/correct +’

exercise/time +’ time +’ hint

+’ attempt) 0.863 0.731 0.808

Table1. The results of each of the explored models. The +’

operator denotes concatenation. The attempt feature in

KDD data refers to the problem view feature.

Table2. R2 results

Model 2009 2014 KDD

DKT: exercise/correct 0.323 0.115 0.234

DKT +’ time/correct 0.387 0.129 0.245

AE(DKT +’ time/correct) 0.387 0.124 0.239

DKT +’ time/correct +’ time +

hint +’ attempt 0.388 0.133 0.250

AE(DKT +’ time/correct +’

time +’ hint +’ attempt) 0.393 0.119 0.221

AE(DKT +’ time/correct +’

exercise/time +’ time +’ hint

+’ attempt) 0.403 0.135 0.250

On all three datasets, models with incorporated features

outperform the original DKT model. In the ASSISTments

2009 dataset, AUC value is improved to 0.857 from 0.829

after adding the cross feature of exercise and time.

However, the AUC value just increases 0.2% when adding

more features such as time, hint usage and attempt count

into the input vectors. Even adding a cross feature of

exercise and time shows no further improvement.

The adoption of the auto-encoder when compared to models

using the same features shows degraded performance of

about 0.2%. In the ASSISTments 2014 dataset, it decreases

to 0.716 from 0.728 while 0.808 to 0.794 in KDD data set.

However, the auto-encoder is essential if more features are

to be considered. For example, the input dimension of the

last model, AE(DKT +’ time/correct +’ exercise/time +’

time +’ hint +’ attempt), in KDD dataset is 3,079, which

exhausted the GPU resources in our environment without

an auto-encoder even when using small batch sizes. From

the above results, the improvement of prediction is mainly

contributed by incorporation of cross features.

7. CONCLUSION

The feature transformation and feature combination, when

properly selected, can be used to improve the prediction

accuracy. Although the parameters are difficult to interpret,

such RNN models are adopted due to the performance

gains.

The improvement here is attributed to the incorporation of

cross features. The auto-encoder allows for the support of

larger input vectors, making it possible to explore such

combinations represented in one-hot encodings.

The work of extending these models has several potential

directions to pursue. One such direction can explore even

more features, engineered in different manners, such as

tokening the words of knowledge components [6] for

different exercise representations. Similarly, a wide and

deep approach [16] can be explored in how the features are

represented within model training.

The numerical data like time and hint usage can also be

revisited in future work. Bucketed according to the

distribution within each exercise rather than across all

exercises will likely improve the representation of those

features. For example, because skill B is harder than skill

A, most students may answer skill A in 20 seconds while

the same student requires 300 seconds in skill B.

Because of flexible structure of deep learning, another

research direction is to use similar RNN model structures to

make other predictions regarding concepts like wheel

spinning [4], student dropout, or hint usage.

8. REFERENCE

1. ASSISTments Data. (2015). Retrieved March 07,

2016, from

https://sites.google.com/site/assistmentsdata/home/

assistment-2009-2010-data/skill-builder-data-

2009-2010

2. Piech, C., Bassen, J., Huang, J., Ganguli, S.,

Sahami, M., Guibas, L. J., & Sohl-Dickstein, J.

(2015). Deep knowledge tracing. In Advances in

Neural Information Processing Systems (pp. 505-

513).

3. Hinton, G. E., & Salakhutdinov, R. R. (2006).

Reducing the dimensionality of data with neural

networks. Science, 313(5786), 504-507.

4. Beck, J. E., & Gong, Y. (2013, July). Wheel-

spinning: Students who fail to master a skill. In

International Conference on Artificial Intelligence

in Education (pp. 431-440). Springer Berlin

Heidelberg.

5. Rumelhart, D. E., Hinton, G. E., & Williams, R. J.

(1985). Learning internal representations by error

propagation (No. ICS-8506). CALIFORNIA

UNIV SAN DIEGO LA JOLLA INST FOR

COGNITIVE SCIENCE.

6. Yu, H. F., Lo, H. Y., Hsieh, H. P., Lou, J. K.,

McKenzie, T. G., Chou, J. W., ... & Weng, J. Y.

(2010). Feature engineering and classifier

ensemble for KDD cup 2010. In Proceedings of

the KDD Cup 2010 Workshop (pp. 1-16).

7. Van Inwegen, E. G., Adjei, S. A., Wang, Y., &

Heffernan, N. T. (2015). Using Partial Credit and

Response History to Model User Knowledge.

International Educational Data Mining Society.

8. Duong, H., Zhu, L., Wang, Y., & Heffernan, N.

(2013, July). A prediction model that uses the

sequence of attempts and hints to better predict

knowledge:" Better to attempt the problem first,

rather than ask for a hint". In Educational Data

Mining 2013.

9. Wilson, K. H., Karklin, Y., Han, B., &

Ekanadham, C. (2016). Back to the Basics:

Bayesian extensions of IRT outperform neural

networks for proficiency estimation. arXiv preprint

arXiv:1604.02336.

10. Wilson, K. H., Xiong, X., Khajah, M., Lindsey, R.

V., Zhao, S., Karklin, Y., ... & Heffernan, N.

Estimating student proficiency: Deep learning is

not the panacea.

11. Pavlik Jr, P. I., Cen, H., & Koedinger, K. R.

(2009). Performance Factors Analysis--A New

Alternative to Knowledge Tracing. Online

Submission.

12. Stamper, J., Niculescu-Mizil, A., Ritter, S.,G.J

Gordon, G., and Koedinger, K. Challenge data sets

from KDD Cup 2010.

13. Khajah, M., Lindsey, R. V., & Mozer, M. C.

(2016). How deep is knowledge tracing?. arXiv

preprint arXiv:1604.02416.

14. Christopher Olah, Understanding LSTM Networks

http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

15. Corbett, A. T., & Anderson, J. R. (1994).

Knowledge tracing: Modeling the acquisition of

procedural knowledge. User modeling and user-

adapted interaction, 4(4), 253-278.

16. Cheng, H. T., Koc, L., Harmsen, J., Shaked, T.,

Chandra, T., Aradhye, H., ... & Anil, R. (2016,

September). Wide & Deep Learning for

Recommender Systems. In Proceedings of the 1st

Workshop on Deep Learning for Recommender

Systems (pp. 7-10). ACM.

17. Xiong, X., Zhao, S., Van Inwegen, E. G., & Beck,

J. E. Going Deeper with Deep Knowledge Tracing.

In Proceedings of the 9th International Conference

on Educational Data Mining (EDM 2016) (pp.

545-550).

18. Bengio, Y., Louradour, J., Collobert, R., &

Weston, J. (2009, June). Curriculum learning. In

Proceedings of the 26th annual international

conference on machine learning (pp. 41-48).

ACM.

