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Abstract. This paper describes our experiments and analysis of utilizing class-

level features to predict student performance for retention tests. There are two 

aspects that make this paper interesting. First, instead of focusing on short-team 

performance, we investigated student performance after a delay of at least 7 

days. Second, we explored several class-level features that can be captured in 

intelligent tutoring systems (ITS), and we showed that some of them have en-

couraging predictive power. With the help of class-level features, the prediction 

result indicated an improvement from an R² of 0.183 with a normal feature set 

to an R² value of 0.224. 
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1 Introduction 

Currently, most ITS present a sequence of problems and, if the student performs well, 

decide that the student has mastered the skill. Similarly, researchers of educational 

data mining have investigated the prediction of student behavior on the immediate 

next action, in other words, student short-term performance [3]. Although performing 

well on a group of problems is an indicator of mastery, it is by far not the only crite-

ria. 

Inspired by the notion of robust learning [1] and the design of the enhanced ITS 

mastery cycle proposed by Wang and Beck [4], we developed and deployed a system 

called the Automatic Reassessment and Relearning System (ARRS) to make deci-

sions about when to review each skill the student mastered. ARRS is an extension of 

the ASSISTments system (www.assistments.org). The idea of ARRS is if a student 

masters a problem set with three correct responses in a row, such mastery is not nec-

essarily an indication of long-term retention. Therefore, ARRS will present the stu-

dent with a reassessment test on the same skill at expanding intervals: firstly 7 days 

after mastery, then 14 days, 28 days and 56 days after the very first test. If a student 

fails the reassessment test, ASSISTments will give him an opportunity to relearn the 



skill. Relearning means that the student must again demonstrate mastery by respond-

ing correctly to three items in a row. Once a student relearns a skill, he will receive 

another reassessment test at the same time delay at which he previously responded 

incorrectly. 

2 Intuition and approach 

In general, student modeling uses data about a student’s performance in order to as-

sess his degree of knowledge. However, consider a situation where all of a student’s 

classmates respond incorrectly to a particular item. When this student encounters the 

item, we would not expect him to respond correctly based on his peers’ performance.  

Strangely, most student modeling approaches would not take advantage of this infor-

mation, even though it is presumably relevant to understanding this student’s 

knowledge. We formed a hypothesis that the class performance and student individual 

performance are not independent and can be used to enhance our models. However, in 

the study of ARRS data, we initially noticed that the number of attempted problems 

before students achieve mastery has great influence on the one-week delayed perfor-

mance [5]. 

2.1 Modeling retention 

At a minimum, students require 3 correct attempts to master a skill. If a student gets 

the first item wrong, he could master the skill in 4 attempts. We refer to the number of 

problems required as the mastery speed that represents a combination of how well the 

student knew this skill originally, and how quickly he can learn the skill. We observed 

that, in general, the slower the mastery speed, the lower the probability that the stu-

dent can answer the problems in the retention test correctly. Students who mastered a 

skill in 3 or 4 problems had an 82% chance of responding correctly on the first reten-

tion test, while students who took over 8 attempts to master a skill only had a 59% 

chance of responding correctly on the first retention test. Finally, there is a group of 

students who tried but failed to master the skill, and who, predictably, did the worst. 

2.2 Modeling class-level effects 

To test our hypothesis of class-level features, we selected the following three features 

to capture different class-level information: (1) class_id: classes were created by 

teachers who are using the ASSISTments, and represent each distinct class a teacher 

has. By modeling class_id as a factor, we are estimating an overall effect of the class-

room. (2) class_prior_performance: measures the class’ performance on prior reas-

sessment tests on same skill. For each reassessment test, the performance is represent-

ed by using the percentage of correctness of tests that have been answered in the same 

class, on the same skill, and have been answered before the student attempts this re-

tention item. (3) class_other_skill_performance: measures the class’ performance on 

all reassessment tests on all other skills. This feature is permitted to use data from the 



future, and is thus not realistic in an actual system, but provides an upper bound for 

how well such information could work. 

3  Model results 

To train our model, we used 42,332 instances of a student using the ARRS system and 

attempting the first retention test for each skill. We separated these pieces of data into 

33,866 instances for the training set and 8,466 for the testing set.  The testing set was 

selected by randomly choosing 20% of the dataset, so there is an issue of non-

independence as the same student appears in both sets. We first employed the mastery 

speed, as well as three other basic features, to establish a baseline for our modeling 

work. These features forced on item and skill information, including: (1) on_grade, 

whether this skill is typically taught in the same grade-level of the student. (2) 

grade_diff, the binned value of grade difference and (3) item_easiness. We fitted this 

base model using multinomial logistic regression; we got an R
2
 of 0.183. 

To investigate how our class-level features could impact our predictions on student 

retention test performance, we started from our base model, described previously, and 

added to it a representation of the class’ performance. We experimented with using 

the class_id as a factor, prior performance on this skill’s retention test, and all per-

formance on all retention tests that did not involve this skill. Table 1 provides the 

results for each of these models.  We provide both the classic R
2
 metric, as well as the 

Nagelkerke (pseudo) R
2
 for comparison purposes as other logistic regression results 

reported have used Nagelkerke [2]. 

Table 1. Class-level model performance 

Model R
2
 on training set R

2
 on testing set 

Base model + class_id 0.158 

(Nagelkerke: 0.215) 

0.159 

Base model + 

class_prior_performance 

0.155 

(Nagelkerke 0.204) 

0.153 

Base model + 

class_other_skill_performance 

0.145 

(Nagelkerke 0.185) 

0.142 

Base model 0.143 

(Nagelkerke 0.183) 

0.142 

 

From the above results, we can see that new model with class_id and 

class_prior_performance performed slightly better than the base model. The im-

portance of class_id in the prediction may suggest that there seems to be an overall 

class effect that differs from average performance on other skills, which is modeled 

by class_other_skill_performance. One question is whether combining the two fea-

tures would be fruitful in improving accuracy? Somewhat surprisingly, a model using 

both class_id and class_prior_performance achieved an R
2
 value of 0.165 

(Nagelkerke 0.224). Thus, whatever class_id represents, it is relatively distinct from 

class_prior_performance as the R
2
 increases noticeably when both are modeled.   



4 Contributions, Future work and conclusions 

This paper makes three contributions. Firstly, this paper identifies speed of mastery as 

a useful new feature relevant to robust learning. Secondly, this paper explored and 

identified class-level effects as being worth modeling. Our analysis adopted class-

level features in order to account for influences that will affect all members of the 

class. The third contribution of this paper is by employing class id in our prediction; 

we adopted a generic approach for intuitively “clustering” students. Our approach of 

clustering requires little additional information, no complex processing, and it is easy 

to understand our clusters and the semantics behind them.   

For examining class-level effects and predicting retention, we used a classifier with 

features that were known to be predictive, such as mastery speed. There are many 

follow-up problems that we are interested in: Are there better ways of using the class-

level data? How well has this teacher’s classes done in preceding years?  Does this 

teacher’s students systematically under- or over-perform on retention tests? Exploring 

these avenues to discover class-level impacts on performance is an interesting future 

direction. 

This paper has presented a problem of predicting whether students will retain in-

formation after a delay of 7 days.  We found that mastery alone is insufficient to pre-

dict retention, and the ease with which students achieve mastery is critical.  However, 

the cognitive meaning of this statement is unclear. Do students who achieve mastery 

quickly already understand the skill, and have retained it from prior instruction, or are 

they simply learning quickly, and quick learners also retain better. Understanding 

what speed of mastery means is a difficult problem. One other clear conclusion is that 

class matters, and the performance of the students’ peers is useful for predicting his 

performance.   
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