
Limits to Accuracy: How Well Can We Do at Student

Modeling?
Joseph E. Beck

Computer Science Department
Worcester Polytechnic Institute

josephbeck@wpi.edu

Xiaolu Xiong
Computer Science Department
Worcester Polytechnic Institute

xxiong@wpi.edu

ABSTRACT

There has been a large body of work in the field of EDM

involving predicting whether the student’s next attempt will be

correct. Many promising ideas have resulted in negligible gains

in accuracy, with differences in the thousandths place on RMSE

or R2. This paper explores how well we can expect student

modeling approaches to perform at this task. We attempt to place

an upper limit on model accuracy by performing a series of

cheating experiments. We investigate how well a student model

can perform that has: perfect information about a student’s

incoming knowledge, the ability to detect the exact moment when

a student learns a skill (binary knowledge), and the ability to

precisely estimate a student’s level of knowledge (continuous

knowledge). We find that binary knowledge model has an AUC

of 0.804 on our sample data, relative to a baseline PFA model

with a 0.745. If we weaken our cheating model slightly, such that

it no longer knows student incoming knowledge but simply

assumes students are incorrect on their first attempt, AUC drops

to 0.747. Consequently, we argue that many student modeling

techniques are relatively close to ceiling performance, and there

are probably not large gains in accuracy to be had. In addition,

knowledge tracing and performance factors analysis, two popular

techniques, correlate with each other at 0.96 indicating few

differences between them. We conclude by arguing that there are

more useful student modeling tasks such as detecting robust

learning or wheel-spinning, and estimating parameters such as

optimal spacing that are deserving of attention.

Keywords

Cheating experiments, student modeling, limits to accuracy,

knowledge tracing, performance factors analysis

1. INTRODUCTION
The field of educational data mining has seen many papers

published on the topic of student modeling, frequently predicting

next item correctness (e.g. [1-6]). Next item correctness refers to

the student modeling task where the student’s past performance

on this skill is known, and the goal is to predict whether the

student will respond correctly or incorrectly to the current item.

This task was the topic of the KDD Cup in 2010. It is typically

assumed that data from other students are also available to aid in

fitting modeling parameters. This research area certainly

appeared to be ripe grounds for rapid improvement, with reported

R2 values for Performance Factors Analysis (PFA; [7]) and

Bayesian knowledge tracing [8] of 0.07 and 0.17, respectively [9].

PFA and Bayesian knowledge tracing were two better known,

baseline techniques, and their apparent poor performance left

tremendous room for improvement by developing more refined

modeling techniques.

Researchers tried a variety of approaches to improve accuracy.

One natural idea was to consider awarding students partial credit

for their attempts. Many researchers use a simple, binary scoring

metric of full points for a student who responds correctly on the

first attempt with no hints, and zero points for a student who

makes any mistakes or requests any hints. Thus, there is no

distinction between a student who makes a mistake and corrects

himself 3 seconds later, and a student who asks the system to tell

him the answer and types it in — both are simply marked as

“incorrect.” Work on partial credit decreased the amount of credit

awarded in proportion to the number of hints requested [3]. By

accounting for student partial credit, it improved model accuracy

from an R2 of 0.1903 to 0.19221.

Another potential weakness in student models is that the domain

models are developed by human experts, who are often guided by

intuition. Perhaps an approach that uses data to automatically

refine student models will result in a better fit to the data? Across

eight datasets where model accuracy was available for the original

and the data-generated models, the model fit (un-weighted

average, computed by the authors) improved slightly from 0.4143

to 0.4020. However, perhaps the primary outcome of the work

was better estimates of the rates at which students learn skills,

which is certainly a useful artifact.

Some approaches were possibly larger successes. One underlying

assumption is that there is one set of model parameters. For

example, all students have the same initial knowledge of a

particular skill; all students learn the skill at the same rate, etc.

Relaxing that assumption and modeling students as two separate

distributions improved R2 from 0.162 to 0.205, and AUC from

0.74 to 0.77[10]. However, to the authors’ knowledge, no one

has tried to replicate this work on another dataset, so the results

should be treated with skepticism.

Many techniques assume that all students have the same initial

knowledge of a particular skill. Such an assumption is clearly

incorrect, as student knowledge typically varies considerably. So

why not incorporate such flexibility into our models? Some

interesting work on extending knowledge tracing allowed student

initial knowledge to vary based on initial performance [11]. The

main finding was that model fit was notably improved, from an R2

of 0.0374 to 0.1236. However, on replication, this approach of

customizing initial student knowledge was found to perform

worse than the baseline knowledge tracing technique with an R2

of 0.089 vs. 0.12572[12]. This later study was also interesting in

that it tested different techniques for estimating model parameters,

1 Note that RMSE, R2 and AUC values are not comparable across

studies due to differing datasets.

2 The R2 statistics for both studies were computed by the authors

of this paper for consistency.

of the three attempts studied, model fit varied from an R2 of

0.1203 to 0.1257. There had been prior work experimenting with

different methods of parameter estimation with conflicting results

about which approach worked better [9, 13]. We find ourselves

agreeing with the authors of [12] that “It is not yet clear what

features of a specific data set (and the tutor it comes from) are

associated with better or worse performance for specific types of

student models.” By creating a machine-learned ensemble of

student models and features, they managed to improve A’ from

0.705 to 0.769 [12]. This is a definitely large improvement in

model accuracy, but raises questions of interpretability, which we

will discuss later in the paper.

A fair question is why improvements in student model accuracy

have been so limited? In general, improvements in model

accuracy have been minimal, particularly given the relatively low

baseline performances. Improving a model with an R2 of 0.9 is

challenging, but improving one that starts at an R2 of 0.17 should

be simpler. The ideas listed above were sensible, but

improvements have generally been modest, and often do not

replicate across data sets. The results generate two questions:

1. What is it about this prediction problem that makes it

difficult?

2. Is there perhaps a much lower upper limit on model

accuracy than might otherwise be suspected?

The motivation for this paper was to explore potential reasons

behind the inability to create highly accurate models.

2. CHEATING EXPERIMENTS WITH

THEORETIC MODELS
Our first investigation into the plausible performance ceiling of

student modeling is done using cheating experiments. The idea of

a cheating experiment is to test a methodology, simulating some

non-existent technology as part of it as a means of discovering

how well a technique would perform if certain limitations are

removed. The key element of a cheating experiment is relaxing

certain limitations in scientific knowledge or methodology, but

not to create an artifact that is too powerful. For example, for our

task of predicting student correct next response, one cheating

experiment would be an algorithm that simply peeks into the

future, and predicts whatever the student will do. While this

approach would certainly be very powerful, it does not give us

much guidance about limiting factors on performance as the only

conclusion one could draw would be “a student modeling

technique that could see the future with perfect accuracy would do

a very good job.” Therefore, we focus on more limited, but still

currently infeasible, extensions of a student model’s capabilities.

This paper investigates three aspects of student modeling. First,

we explore how a student model would do with a perfect detector

of learning [14]. Second, we investigate how important

understanding student incoming knowledge is. Third, we examine

how a continuous estimate of knowledge would perform.

Thus, the goal of our analysis is to estimate how well we could

perform at student modeling if we had a perfect model of several

aspects of learner cognition. However, we first give our baseline

assumptions, then describe our data, and finally provide baseline

model performance when trained on those data.

2.1 UNDERLYING ASSUMPTIONS
We were interested in understanding what factors limit our ability

to model the student. One input, typically implicit in student

modeling research, is the domain model the maps items to skills

(sometimes called a “Q-matrix”). This model enables us to map

student performance on an item to a particular skill in the domain.

If this aspect of the system is poorly done, model accuracy can

suffer. The authors are unaware of any large gains in accuracy by

refining a “reasonably constructed” transfer model; we add the

restriction as we are certain that refining a randomly generated

transfer model would improve accuracy. Recent work [6] found a

slight improvement in accuracy from refining models, but the

effect was not large. Therefore, we do not consider improvements

in the transfer model within this paper.

Furthermore, we assume that we do not know the underlying

model generating students’ responses. While it is certainly

possible to make such an assumption and to use, for example,

knowledge tracing, to generate student responses, such an

approach assumes far too much, and is of questionable

applicability to real-world tutoring scenarios. Therefore, rather

than generate hypothetical student responses and estimate our

ability to recover our initial models, we simply use the student

performance data as provided and compute our predictive

accuracy.

2.2 DATA DESCRIPTION AND BASELINE

MODEL
For our analyses, we use two datasets. The first is from the

ASSISTments (www.assistments.org) web-based tutor. These data

are from 343 eighth-grade students (approximately 13 years old)

in four classes in urban school districts in the Northeastern United

States. There were 86,528 first attempts at responding to a

mathematics problem, and students were correct 64.5% of the

time. The domain is represented as 104 mathematics skills. Our

second dataset is the 2010 KDD Cup dataset, from the Cognitive

Algebra Tutor. We used one of the training datasets, and filtered

out rows with missing values resulting in 607,026 rows of data

with students correct 75.5% of the time. These data are from 574

students working on 158 skills in mathematics. Although both

systems involve math skills, they are actually rather different from

each other. ASSISTments serves primarily as computer-assisted

practice for students’ nightly homework and review lessons, while

the Cognitive Tutor is part of an integrated curriculum and has

more support for learners during the problem-solving process.

For our baseline approach, we have selected the Performance

Factors Analysis (PFA; [7]) model. A PFA model takes the form

of a logistic regression model, where the independents are the

number of correct and incorrect responses, and the difficulty of

the item the student is attempting. As PFA estimates the impact

on performance by weighting types of learning opportunities

differently (correct vs. incorrect responses), it can be seen as a

variant of learning decomposition [15]. For our data, we have

found that PFA typically does a better job at predicting [9] the

data than Bayesian knowledge tracing [8]. Thus it is more

appropriate as a baseline metric. For both our baseline approach

and our cheating models, we represent data separately for each

student on each skill. Thus, when we discuss successive student

attempts, we mean successive attempts on the same skill, and

ignore intervening problems on other skills.

For performance metrics, we use the Area Under the Curve

(AUC) and R2. AUC is an approximation of A’; it is a commonly

used metric when comparing student modeling techniques. The

http://www.assistments.org/

upper limit on AUC is 1.0, and the practical lower limit is 0.53.

AUC evaluates techniques based on how well they order their

predictions. For four problems, if a model predicts that a student

has a 95%, 90%, 87%, and 86% chance of responding correctly

and the student gets the first two items correct and the next two

items incorrect, the AUC will be a perfect 1.0 (assuming a

threshold of 50% is used, which would be a poor choice in this

scenario). Even though the model predicts the student is likely to

get the last two items correct, since those items are relatively less

likely to be correct than the first two, AUC gives a perfect score.

R2 is based on the squared error between the predicted and actual

value, but is normalized relative to the variance in the dataset. A

perfect R2 value is 1.0, while 0 is a lower bound for (non-pseudo)

R2. R2 is similar to Root Mean Squared Error (RMSE), but is

more interpretable due to the normalization step. For example, it

is unclear whether an RMSE of 0.3 is good or bad, perhaps a

better error could be obtained simply by predicting the mean

value? However, an R2 of 0.8 indicates the model is account for

most of the variability in the data. For computational simplicity,

we do not use the pseudo- R2 method such as Nagelkerke in this

paper. Neither AUC nor R2 is a perfect evaluation metric, but,

combined; they account for different aspects of model

performance (relative ordering, and absolute accuracy,

respectively) and provide us a basis for evaluating our models.

Table 1 shows performance of the baseline PFA model on both

the ASSISTments and KDD Cup data. We can see that the model

does not fit the KDD Cup data set as well as the ASSISTments

data. Also, the AUC scores are reasonably high, indicating PFA is

able to order its predictions relatively well. However, the lower

R2 values indicate the magnitude of the errors is still substantial.

Table 1. Performance of baseline PFA model

Data source AUC R2

ASSISTments 0.745 0.170

KDD Cup 0.713 0.100

2.3 CHEATING MODEL 1: A PERFECT

DETECTOR OF LEARNING AND INITIAL

KNOWLEDGE
Our first cheating experiment involves what would be a useful

piece of technology: a perfect detector of the moment of student

learning [14]. When a student is practicing a skill, there is

hopefully an “aha!” moment where the student has a large jump in

understanding the skill. This cheating model simulates the ability

to detect such learning. In addition, the model is also aware of

whether the students begin using the tutor with knowledge of the

skill. Even though it has no data about the student on this skill, it

can apply its learning detector on the first attempt when the

student sits down. This cheating model behaves by examining the

student’s next response, and if the student will respond correctly,

this model will mark the student as just learned the skill, and

predict a correct response.

However, this model is not permitted to cheat for unlearning or

forgetting. For example, if the model believes the student knows

3 Although technically AUC can be below 0.5, in that case the

model’s accuracy would be improved, and the resulting AUC

would be above 0.5, simply by inverting all of its predictions.

the skill, it will predict a correct response. If the next response is

incorrect, it must first make an error on that response by

predicting correct, and then may reevaluate whether the student

really knows the skill. To make this decision, the cheating model

is permitted to peek ahead at the future student responses and

decide whether it wants to change its mind about the student’s

knowledge and mark him as not knowing the skill.

Although this procedure may sound baroque, there are two

reasons for it. First, a cheating model that perfectly detected

learning as well as forgetting would never make a mistake, and

not produce a useful result. Second, most student modeling

approaches focus on learning, and ignore the impact of forgetting

[8] (with a few exceptions, such as [2]). Since forgetting is often

caused by interference [16], and it is difficult to know all the

relevant stimuli to which the student is exposed, this aspect would

be difficult to model. To be clear, although Cheating Model 1

(CM1) does not have a perfect detector of forgetting, it is not

monotonic in its predictions. That is, when presented with

evidence the student does not know the skill (i.e., an incorrect

response), it is permitted to backtrack in its estimate of student

knowledge.

For an example of how CM1 performs, see Table 2. For the first

item, CM1 is permitted to know whether the student knows the

skill, and so predicts an incorrect student response. For the second

item, CM1’s perfect detector of learning enables it to realize the

student has learned the skill (by peeking ahead at the next

response), and so it predicts a correct student response. Two items

later, the student makes a mistake, and as CM1 believes the

student knows the skill, the model makes an incorrect prediction

(bold, underlined entry). The model then peeks ahead to

determine whether it is better to ignore this transient slip, or

whether it should change its mind about whether the student

knows the skill. Since there is a second incorrect response, CM1

can improve its accuracy by believing the student does not know

the skill. Thus, CM1 adjusts its predictions to be in best

accordance with future student data, but is not permitted to predict

the forgetting before it receives direct evidence.

Table 2. Predictions for CM1 and CM2 on sample student

performance data. Bold underlined entries indicate incorrect

predictions

Correct? CM1 CM2i CM2c CM2m

0 0 0 1 1

1 1 1 1 1

1 1 1 1 1

0 1 1 1 1

0 0 0 0 0

1 1 1 1 1

1 1 1 1 1

For a more formal definition, Figure 1 provides the pseudocode

for the Cheating Model #1 (CM1).

On the ASSISTments data, this initial cheating model has an AUC

of 0.804 and an R2 of 0.50. On the KDD Cup dataset, it has an

AUC of 0.762 and R2 of 0.453. Our cheating model clearly

outperforms PFA (as it should) on both datasets; AUC is

increased by 0.5 or 0.6, and R2 by 0.35.

Figure 1. Pseudocode for Cheating Model 1 (CM1)

2.4 CHEATING MODEL 2: WHAT IS THE

IMPACT OF KNOWING STUDENT

INCOMING KNOWLEDGE?
The first cheating experiment provided substantial gains in model

performance. However, these gains are a result of two pieces of

non-existent technology: a perfect detector of learning, and a

perfect detector of incoming knowledge. What if we ablate the

model slightly, and remove its ability to know student incoming

knowledge? Thus, our model will retain its ability to detect

“aha!” moments by the learner, but cannot necessarily correctly

predict the student’s first attempt.

To handle imperfect first prediction, we consider three baseline

models:

1. A model that assumes the student knows all skills so

will respond Correctly (CM2c) on first attempts.

2. A model that assumes the student knows nothing, so

will respond Incorrectly (CM2i) on first attempts.

3. A model that assumes the student answers correctly on

easy items, instantiated as those items that are answered

correctly a Majority (CM2m) of the time across all

students.

Table 2 provides an example of how CM2c, CM2i, and CM2m

perform relative to CM1. As can be seen, the only difference is

on how each of these models predicts the first element. Since

CM2c predicts the first response will be correct, it makes an error

in prediction. For this example, we have arbitrarily assigned the

first item a difficulty of 0.4, so since the majority of students get

this item correct, CM2m predicts the current student will. For a

more formal definition, the pseudocode for CM2 can be seen in

Figure 2

The impact of prior knowledge for the ASSISTments data may be

seen in Table 4; assuming the student will respond incorrectly on

the first attempt is the best (simple) approach for prediction. For

the ASSISTments dataset, the drop-off in accuracy is noticeable:

AUC drops from 0.804 to 0.747, just slightly better than the

baseline PFA model’s 0.745. Similarly R2 drops from 0.5 to

0.239—a very substantial drop, and moderately better than PFA’s

0.17. For ASSISTments, understanding student initial knowledge

is important.

In the KDD Cup dataset, as can be seen in Table 5, the results

were broadly similar to those for ASSISTments, with one major

points of divergence: the impact of understanding student first

problem performance is much less dramatic. For the KDD Cup

data, the AUC only drops from 0.762 to 0.754. One explanation

is in this dataset there are relatively more problems solved per

student per skill. Within ASSISTments, on average each student

solves 4.7 problems on each skill he works on. In the Cognitive

Algebra Tutor, students practice 19 problems per skill. Thus,

since more problems are solved by each student in each skill in

the Cognitive Algebra Tutor, initial knowledge estimation has a

smaller impact on accuracy. ASSISTments is probably on the

lower end of amount of practice per skills; while the Cognitive

Tutors, due to the integrated curriculum, is probably on the higher

end. Here we see another example of the point made in [12] that

there is often inconsistency in approaches across datasets. A

hypothesis consistent with our data is that a good model of

incoming student knowledge is more useful in scenarios when

there are fewer data per skill. We suspect modeling prior

knowledge is also more effective when students are more

heterogeneous; if all students (don’t) know a skill, there is little

point in modeling their incoming knowledge separately.

Figure 2. Pseudocode for Cheating Model 2 (CM2)

2.5 CHEATING MODEL 3: ESTIMATING

CONTINUOUS KNOWLEDGE AND

PERFORMANCE
The final cheating model takes a clue from CM2m, which bases

its predictions on item difficulty. Rather than simply assuming

that a learner knows a skill or does not, CM3 maintains a degree

of knowledge for each learner. Our semantics are that knowledge

and difficulty are both in the range [0,1]. Larger values represent

higher degrees of learner knowledge and more difficult items. If

item difficulty is less than or equal to knowledge, this model

maintains the learner will respond correctly. Otherwise the

learner will respond incorrectly to the item. In this manner, it can

represent a student who can respond correctly to some items

within a skill, but get other items wrong. The intuition is that the

model raises knowledge just high enough to account for student

correct responses. On observing an incorrect response, it has the

option to decrease student knowledge. The reasoning is similar to

that for CM1: a model that could increase and decrease

knowledge estimates at will (before seeing the student’s response)

would achieve perfect accuracy. When a student answers an

incorrect response, it can decrease its knowledge estimate

arbitrarily low, and will lower it enough to account for later

incorrect responses.

Table 3 shows how CM3 performs given the same student

performance data as before, but also incorporate item difficulty

information. CM3, like CM1, is permitted to peek ahead on the

first student performance. Since the student responds incorrectly,

the student’s knowledge is set to be just under what is required.

Since the student responds correctly to the next item, the

knowledge is increased to 0.7 to be just sufficient. The student

responds incorrectly to the next item, but its difficulty is higher

than the student’s knowledge, so CM3 predicts the student will

get the item wrong and no update to student knowledge is

required. Two items later, the student responds incorrectly to an

item of difficulty 0.65. This response causes the model to make a

mistake as this item is lower than the student’s knowledge of 0.7.

CM3 responds by decreasing the knowledge, not to .649, but to

0.599. The reason is that CM3 looks ahead, and determines what

level of knowledge will best predict the current streak of incorrect

responses, and sets knowledge to the maximal level. Since the

student gets the next item, with a difficulty of 0.6, incorrect,

knowledge is set just below that point. A formal definition of

CM3 is provided in Figure 3.

Table 3. Example of predictions and updating knowledge

estimates for CM3. Bold underlined entries indicate incorrect

predictions

Correct? Item difficulty Prediction Knowledge

estimate

0 0.4 0 0.399

1 0.7 1 0.7

0 0.8 0 0.7

1 0.6 1 0.7

0 0.65 1 0.599

0 0.6 0 0.599

1 0.3 1 0.599

The performance of CM3 on the ASSISTments dataset is seen in

the first row of Table 4. CM3, due to its ability to incorporate

continuous levels of knowledge, is the strongest performer on the

ASSISTments dataset by a large margin. Apparently representing

knowledge as a binary value, even with a model with a perfect

detector of learning, results in a considerable weakness.

Representing gradations of student knowledge appears to be much

more effective.

The performance of CM3 on the KDD Cup data is seen in the first

row of Table 5. Again, continuous knowledge resulted in strong

performance. For the KDD Cup data, we were a bit stymied as to

the meaning of “item difficulty”. For these results, we used a

concatenation of problem name and step name. However, many

such pairs were only attempted by 1 student, leading to

considerable over-fitting. Using just the problem name suffers

from the problem of underspecificity, and gives an AUC and R2 of

0.798 and 0.442, respectively.

Table 4. Full performance results on ASSISTments data

 Initial

knowledge

Continuous

knowledge

AUC R2

CM3 Known Yes 0.884 0.634

CM1 Known No 0.804 0.5

CM2i Assume

incorrect

No 0.747 0.239

PFA 0.745 0.17

CM2m Based on

difficulty

No (except

first item)

0.724 0.273

CM2c Assumed

correct

No 0.678 0.266

Figure 3. Pseudocode for Cheating Model 3 (CM3)

3. EMPIRICAL CHEATING

EXPERIMENTS
In addition to the theoretic cheating experiments, we also examine

data from recent work [12] on ensembling multiple techniques

together. This dataset4 is of interest as it provides the predictions

of multiple student modeling techniques as a means of estimating

4 Kindly provided by the paper authors.

an upper bound on performance. For this work we focus on four

approaches to Bayesian knowledge tracing (BKT), and a PFA

model. The first two BKT variants use different search techniques

to estimate the model parameters; the third approach restricts the

training data to find more relevant cases; the fourth variant

extends the BKT model by allowing each student to have a

different level of initial knowledge:

1. Brute force (BF): estimates model parameters by

exhaustively searching the set of initial knowledge,

learning, guess, and slip parameters.

2. Expectation maximization (EM): finds the model

parameters that maximize the data likelihood.

3. Less data (LD): a variant of knowledge tracing that uses

fewer training data.

4. Prior per student (PPS): rather than assuming all

students have the same prior knowledge for a skill, it

makes initial knowledge conditional on student

performance.

Table 5. Full performance results on KDD Cup data

 Initial

knowledge

Continuous

knowledge

AUC R2

CM3 Known Yes 0.887 0.673

CM1 Known No 0.762 0.453

CM2i Assume

incorrect

No 0.754 0.353

CM2m Based on

difficulty

No (except

first item)

0.713 0.357

PFA 0.713 0.1

CM2c Assumed

correct

No 0.711 0.356

In the original work on ensembling from which these data derive,

the authors used machine learning approaches to find the best way

of combining the models’ predictions to create a more accurate

model. Instead of that approach, we will consider how a model

that managed to always select the best base model would do.

Specifically, we instantiate our model as follows:

 If student response is correct

 then prediction = max(BF, EM, LD, PPS, PFA)

 else prediction = min(BF, EM, LD, PPS, PFA)

Table 6 provides some sample predictions for the five algorithms

and shows how our cheating experiment behaves. For each

student response, the model selects whichever prediction is

closest. Unlike the earlier cheating models, this one does not have

explicit assumptions about learning or initial knowledge, but

simply picks whichever prediction is closest. Thus, for the third

student response, a (perhaps) unexpected incorrect response, this

approach simply selects the lowest value. In other words, our

empirical cheating experiment postulates the existence of a perfect

ensembling approach that always selects the best of its options.

We computed our model’s predictions across all 178,000 rows in

the provided dataset. The performance of our model and baseline

techniques PFA and KT-LD (best performing of the KT

techniques [12]) is shown in Table 7. The empirical cheating

technique strongly outperformed the baseline techniques, and

appears to be somewhat better than the best ensembling technique

found, which had an A’ (approximately equivalent to AUC) of

0.769. Therefore, there may be room to develop more refined

ensembling techniques, and discover additional features in order

to improve predictive accuracy. We discuss the utility of this line

of research in the Future Work section.

Table 6. Empirical cheating experiment

Correct? BF EM LD PPS PFA prediction

0 0.31 0.31 0.31 0.25 0.34 0.25

1 0.60 0.60 0.59 0.60 0.60 0.60

0 0.35 0.37 0.37 0.29 0.38 0.29

1 0.46 0.47 0.47 0.42 0.47 0.47

1 0.37 0.37 0.37 0.36 0.39 0.39

Table 7. Performance in empirical cheating experiments

 AUC R2

Empirical cheating 0.831 0.324

PFA 0.706 0.130

KT-LD 0.701 0.126

One suggestive item in Table 6 is that it appears that each of the

student modeling techniques is making fairly similar predictions

to its competitors. This phenomenon was also noted when

comparing techniques on another data set [17]. To test this idea,

we looked across all 178,000 data points, and found that the five

student modeling techniques (BF, EM, LS, PPS, and PFA)

intercorrelated with each other at 0.92 on average. The prior per

student (PPS) model was the most idiosyncratic (and the worst

performing), with an average correlation of 0.85 with the other

models. If PPS is removed, the remaining four techniques

intercorrelated at 0.96, an astonishingly high value. This high

number is not an artifact of comparing variants of knowledge

tracing with each other: PFA’s predictions correlates with KT-

LD’s at 0.95. It should be noted that each of these techniques has

typically been the subject of multiple papers investigating its

strengths and weaknesses, and exploring different variations (e.g.

item- vs. skill-based PFA [5]). However, it appears the major

story is that all of the techniques are in large-scale agreement with

each other.

4. MAIN RESULTS AND LIMITATIONS
This paper has estimated likely upper bounds on student modeling

performance. Our approach was to consider the basic cognitive

factors influencing student performance, and then construct a

cheating experiment that perfectly models those factors. On

ASSISTments data, we found that the ability to perfectly model

student learning, but imperfect information about prior

knowledge, led to a model that performed only slightly better than

a baseline PFA model. This result is rather surprising.

The other striking result is that, in spite of being an active

research area in the EDM, AIED, and ITS communities,

competing student modeling approaches make remarkably similar

predictions. Given the relative closeness of empirical results to

our cheating models, and the high intercorrelations, a plausible

conclusion is that the majority of the work in the field of

predicting next item correctness has been done, and there are not

large gains in performance remaining to be found.

The cheating models described in this paper are extremely

powerful, and examine the basic cognitive inputs to student

performance. We are unlikely to get perfect detectors of learning

any time in the near future. For student modeling approaches that

rely on determining when a student has learned, trying to infer

incoming knowledge, and account for item difficulty, these

cheating models provide a reasonable upper limit on accuracy.

However, what of approaches those are not based on cognitive

principles? For example, student mistakes could be due to lack of

knowledge, or could be due to a careless error. Such careless

errors appear to be non-random, as such mistakes have been found

to be associated [18] with gaming the system [19], and there is

work on contextual detectors of slip and guess [13]. The potential

improvement from such work is not accounted for by the analyses

presented in this paper.

In addition, approaches such as collaborative filtering [20]

provide an avenue for non-cognitive approaches to improving

student modeling. With collaborative filtering approaches, rather

than modeling student knowledge explicitly, instead the goal is to

find similar past students and use their performance to make a

prediction for the current student (e.g., [21]).

5. FUTURE DIRECTIONS
It is unclear how much additional gain there is from refining

student models to achieve ever higher predictive accuracy. Many

promising approaches have resulted in little real-world

improvement in accuracy. One drawback is the seductive

combination of statistical hypothesis testing with increasingly-

large datasets. It is possible to find statistically reliable results

corresponding to very small effects. Even with a relatively small

dataset of 48,000 item responses, a result with a p-value of 0.002

resulted in an improvement of less than 0.001 in R2 [22]. While

larger datasets enable us to estimate such miniscule quantities

quite precisely (thus, the low p-value), it raises the question of

whether this result useful in any way?

We should reflect on why so much effort is being devoted to the

problem of predicting student next response. Two candidate

answers are that’s where the data are, and this task was the goal of

the 2010 KDD Cup. Certainly, correctness performance on each

item for each student is a very vast source of data. Ten years ago

that argument would have been a strong rationale, but now there

are large quantities of educational data of all sorts. As a thought

experiment, imagine a research result were published in EDM

2014 with a new student modeling approach that achieved an A’

of 0.9 (comparable to an AUC of 0.9, but A’ has simpler

semantics). Effectively that would mean that given a correct and

an incorrect student response, this student model could determine

which was which 90% of the time. Such an accomplishment

would be a major step forward in our capabilities. But, what

would we actually do with the model? This question is non-

rhetorical, as the authors do not have a good answer. To be clear,

there are plenty of useful problems our student models could

address, such as the probability of a student receiving an “A” in

the course, or whether he is ready to move and learn subsequent

material.

Ironically, as a field we have settled on a common test problem

that has little impact on tutorial decision making or on informing

the science of learning. We got to this point for good reasons.

Student modeling in ITS is primarily about the estimation of

student knowledge. In addition to plentiful data at the item

response level, one natural method of validating [23] an

instrument is to compute its predictive validity. That is, how well

does the measure correlate with things the construct should

correlate with. If our model of student knowledge is a good one,

it should have a high correlation with student performance on

items. Thus, from an instrumentation standpoint our scientific

approach is reasonable.

However, while showing that a measure has a high correlation is a

necessary condition in validating a measure, it is never a sufficient

condition [23]. In other words, constructing a student model with

a higher predictive accuracy is not sufficient to create a better

estimate of the student’s knowledge. As a concrete example,

consider ensembling methods, which consider the outputs of

different student modeling approaches, and finds a means to

combine their predictions with additional features to better predict

student performance. Such approaches are in fact successful at

noticeably raising the bar (e.g. [12]). However, is there any

interpretable component relating to student knowledge? Can we

use this model to predict whether an intervention will lead to

more learning? If not, then what do we do with the model?

To be clear, this paper does not assert that the field of student

modeling is completed. Rather, it makes a more modest claim:

the research thread of predicting next item correctness is

approaching limits to accuracy, and has probably progressed

beyond a useful point. However, there remain several interesting,

known problems in student modeling that can inform us about

student learning, and have a clear correspondence to improving

tutorial decision making.

First, consider the robust learning framework of the Pittsburgh

Science of Learning Center. The components of robust learning

are preparation for future learning (of related skills), transfer to

novel contexts, and retention. Constructing a detector of the first

two components of robust learning (e.g., [24]) is a worthwhile

modeling goal. Other work has focused on predicting the third

component, retention (e.g., [25]).

As a second example, work on the optimal interval to wait before

presenting an item on the same skill would be useful. Items

presented to close together temporally waste time on repetitive

practice; too far apart risks having the student forget and having to

relearn [26]. However, such intervals vary by student and skill.

This problem can be seen as the complement of retention: how

long can we wait before risking the student will forget the item?

As a third example, detectors of student behaviors that are out of

bounds of our simplified model of the learner are a useful avenue

to explore. Our model is that students are attempting to solve

problems, and as a result are learning a little bit each time. But

what if the student is bored [27] or frustrated and discouraged

[28]? A recent example of such a detector is wheel-spinning [29],

named after how a student spins his wheels and goes through the

motions of learning, but learning repeatedly does not occur.

Detecting and suggesting remediation for, such problems is an

interesting third avenue to explore.

ACKNOWLEDGMENTS
We want to acknowledge the funding on NSF grant DRL-

1109483 as well as funding of ASSISTments. See here

(http://www.webcitation.org/67MTL3EIs) for the funding sources

for ASSISTments

http://www.webcitation.org/67MTL3EIs

REFERENCES
1. Thai-Nghe, N., T. Horváth, and L. Schmidt-Thieme.

2011. Factorization models for forecasting student

performance. In proceedings of Educational Data

Mining. p. 6-8

2. Qiu, Y., Y. Qi, H. Lu, Z.A. Pardos, and N.T. Heffernan.

2011. Does Time Matter? Modeling the Effect of Time

with Bayesian Knowledge Tracing. In proceedings of

Fourth International Conference on Educational Data

Mining. p.

3. Wang, Y., N. Heffernan, and J.E. Beck. 2010.

Representing student performance with partial credit. In

proceedings of Educational Data Mining. p. 335-336

4. Wang, Y. and N.T. Heffernan. 2011. Towards Modeling

Forgetting and Relearning in ITS: Preliminary Analysis

of ARRS Data. In proceedings of Fourth International

Conference on Educational Data Mining. p.

5. Gong, Y. and J.E. Beck. 2011. Items, Skills, and

Transfer Models: Which really matters for student

modeling? In proceedings of Educational Data Mining.

p. 81-90

6. Koedinger, K.R., E.A. McLaughlin, and J.C. Stamper.

2012. Automated Student Model Improvement. In

proceedings of Educational Data Mining. p. 17-24

7. Pavlik, P.I., H. Cen, and K.R. Koedinger. 2009.

Performance factors analysis—A new alternative to

knowledge tracing. In proceedings of Proceedings of the

14th International Conference on Artificial Intelligence

in Education. p.

8. Corbett, A.T. and J.R. Anderson, 1995. Knowledge

tracing: Modeling the acquisition of procedural

knowledge. User Modeling and User-Adapted

Interaction. 4: p. 253-278.

9. Gong, Y., J.E. Beck, and N.T. Heffernan, 2011. How to

Construct More Accurate Student Models: Comparing

and Optimizing Knowledge Tracing and Performance

Factor Analysis International Journal of Artificial

Intelligence and Education.

10. Gong, Y., J.E. Beck, and C. Ruiz. 2012. Modeling

Multiple Distributions of Student Performances to

Improve Predictive Accuracy. In proceedings of User

Modeling and Adaptive Personalization. p. 102-113

11. Pardos, Z. and N. Heffernan. 2010. Modeling

individualization in a Bayesian networks

implementation of knowledge tracing. In proceedings of

User Modeling, Adaptation, and Personalization. p.

255-266

12. Pardos, Z., R.S.J.D. Baker, S.M. Gowda, and N.T.

Heffernan, 2012. The Sum is Greater than the Parts:

Ensembling Models of Student Knowledge in

Educational Software. ACM SIGKDD Explorations.

13(2).

13. Baker, R.S.J.d., A.T. Corbet, and V. Aleven. 2008.

More Accurate Student Modeling Through Contextual

Estimation of Slip and Guess Probabilities in Bayesian

Knowledge Tracing. In proceedings of Intelligent

Tutoring Systems. p. 406-415

14. Baker, R.S.J.d., A.B. Goldstein, and N.T. Heffernan,

2011. Detecting Learning Moment-by-Moment. Journal

of Artificial Intelligence in Education. 21(1-2): p. 5-25.

15. Beck, J.E. and J. Mostow. 2008. How who should

practice: Using learning decomposition to evaluate the

efficacy of different types of practice for different types

of students. In proceedings of Ninth International

Conference on Intelligent Tutoring Systems. p. 355-362

16. Anderson, J.R., 1993. Rules of the Mind. Hillsdale, NJ:

Lawrence Erlbaum Associates.

17. Pardos, Z., S.M. Gowda, R.S.J.d. Baker, and N.T.

Heffernan. 2011. Ensembling Predictions of Student

Post-Test Scores for an Intelligent Tutoring System. In

proceedings of Educational Data Mining. p. 189-198

18. Gong, Y., J.E. Beck, N.T. Heffernan, and E. Forbes-

Summers. 2010. The Impact of Gaming (?) on Learning.

In proceedings of International Conference on

Intelligent Tutoring Systems. p.

19. Baker, R.S.J.d., et al. 2006. Adapting to When Students

Game an Intelligent Tutoring System. In proceedings of

Proceedings of the 8th International Conference on

Intelligent Tutoring Systems. p. 392-401

20. Breese, J., D. Heckerman, and C. Kadie. 1998.

Empirical Analysis of Predictive Algorithms for

Collaborative Filtering. In proceedings of Proceedings

of the Fourteenth Conference on Uncertainty in

Artificial Intelligence. p.

21. Toscher, A. and M. Jahrer, 2010. Collaborative filtering

applied to educational data mining. Journal of Machine

Learning Research.

22. Li, S., X. Xiong, and J.E. Beck. 2013 (under review).

Modeling student retention in an environment with

delayed testing. In proceedings of Educational Data

Mining. p.

23. Crocker, L. and J. Algina, 1986. Introduction to

Classical and Modern Test Theory. Fort Worth:

Harcourt Brace Jovanovich College Publishers. 482.

24. Baker, R.S.J.d., S.M. Gowda, A.T. Corbett, and J.

Ocumpaugh. 2012. Towards Automatically Detecting

Whether Student Learning is Shallow. In proceedings of

Intelligent Tutoring Systems. p. 444-453

25. Wang, Y. and J.E. Beck. 2012. Using Student Modeling

to Estimate Student Knowledge Retention. In

proceedings of Educational Data Mining. p. 201-203

26. Pavlik, P.I. and J.R. Anderson, 2005. Practice and

Forgetting Effects on Vocabulary Memory: An

Activation-Based Model of the Spacing Effect.

Cognitive Science. 29(4): p. 559-586.

27. Baker, R.S.J.d., S.K. D'Mello, M.M.T. Rodrigo, and

A.C. Graesser, 2010. Better to be frustrated than bored:

The incidence, persistence, and impact of learners'

cognitive-affective states during interactions with three

different computer-based learning environments.

International Journal of Human-Computer Studies.

68(4): p. 223-241.

28. Arroyo, I., B.P. Woolf, D. Cooper, W. Burleson, and K.

Muldner. 2011. The Impact of Animated Pedagogical

Agents on Girls’ and Boys’ Emotions, Attitudes,

Behaviors and Learning. In proceedings of Advanced

Learning Technologies. p. 506-510

29. Beck, J.E. and Y. Gong. 2013. Wheel-spinning: student

who fail to master a skill. In proceedings of Artificial

Intelligence in Education. p. (in press)

