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ABSTRACT 

There has been a large body of work in the field of EDM 

involving predicting whether the student’s next attempt will be 

correct.  Many promising ideas have resulted in negligible gains 

in accuracy, with differences in the thousandths place on RMSE 

or R2.  This paper explores how well we can expect student 

modeling approaches to perform at this task.  We attempt to place 

an upper limit on model accuracy by performing a series of 

cheating experiments.  We investigate how well a student model 

can perform that has: perfect information about a student’s 

incoming knowledge, the ability to detect the exact moment when 

a student learns a skill (binary knowledge), and the ability to 

precisely estimate a student’s level of knowledge (continuous 

knowledge).  We find that binary knowledge model has an AUC 

of 0.804 on our sample data, relative to a baseline PFA model 

with a 0.745.  If we weaken our cheating model slightly, such that 

it no longer knows student incoming knowledge but simply 

assumes students are incorrect on their first attempt, AUC drops 

to 0.747.  Consequently, we argue that many student modeling 

techniques are relatively close to ceiling performance, and there 

are probably not large gains in accuracy to be had.  In addition, 

knowledge tracing and performance factors analysis, two popular 

techniques, correlate with each other at 0.96 indicating few 

differences between them.  We conclude by arguing that there are 

more useful student modeling tasks such as detecting robust 

learning or wheel-spinning, and estimating parameters such as 

optimal spacing that are deserving of attention. 
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1. INTRODUCTION 
The field of educational data mining has seen many papers 

published on the topic of student modeling, frequently predicting 

next item correctness (e.g. [1-6]).  Next item correctness refers to 

the student modeling task where the student’s past performance 

on this skill is known, and the goal is to predict whether the 

student will respond correctly or incorrectly to the current item.  

This task was the topic of the KDD Cup in 2010.  It is typically 

assumed that data from other students are also available to aid in 

fitting modeling parameters.  This research area certainly 

appeared to be ripe grounds for rapid improvement, with reported 

R2 values for Performance Factors Analysis (PFA; [7]) and 

Bayesian knowledge tracing [8] of 0.07 and 0.17, respectively [9].  

PFA and Bayesian knowledge tracing were two better known, 

baseline techniques, and their apparent poor performance left 

tremendous room for improvement by developing more refined 

modeling techniques.   

Researchers tried a variety of approaches to improve accuracy.  

One natural idea was to consider awarding students partial credit 

for their attempts.  Many researchers use a simple, binary scoring 

metric of full points for a student who responds correctly on the 

first attempt with no hints, and zero points for a student who 

makes any mistakes or requests any hints.  Thus, there is no 

distinction between a student who makes a mistake and corrects 

himself 3 seconds later, and a student who asks the system to tell 

him the answer and types it in — both are simply marked as 

“incorrect.”  Work on partial credit decreased the amount of credit 

awarded in proportion to the number of hints requested [3].  By 

accounting for student partial credit, it improved model accuracy 

from an R2 of 0.1903 to 0.19221. 

Another potential weakness in student models is that the domain 

models are developed by human experts, who are often guided by 

intuition.  Perhaps an approach that uses data to automatically 

refine student models will result in a better fit to the data?  Across 

eight datasets where model accuracy was available for the original 

and the data-generated models, the model fit (un-weighted 

average, computed by the authors) improved slightly from 0.4143 

to 0.4020.  However, perhaps the primary outcome of the work 

was better estimates of the rates at which students learn skills, 

which is certainly a useful artifact. 

Some approaches were possibly larger successes.  One underlying 

assumption is that there is one set of model parameters.  For 

example, all students have the same initial knowledge of a 

particular skill; all students learn the skill at the same rate, etc.  

Relaxing that assumption and modeling students as two separate 

distributions improved R2 from 0.162 to 0.205, and AUC from 

0.74 to 0.77[10].  However, to the authors’ knowledge, no one 

has tried to replicate this work on another dataset, so the results 

should be treated with skepticism.   

Many techniques assume that all students have the same initial 

knowledge of a particular skill.  Such an assumption is clearly 

incorrect, as student knowledge typically varies considerably.  So 

why not incorporate such flexibility into our models?  Some 

interesting work on extending knowledge tracing allowed student 

initial knowledge to vary based on initial performance [11].  The 

main finding was that model fit was notably improved, from an R2 

of 0.0374 to 0.1236.  However, on replication, this approach of 

customizing initial student knowledge was found to perform 

worse than the baseline knowledge tracing technique with an R2 

of 0.089 vs. 0.12572[12].  This later study was also interesting in 

that it tested different techniques for estimating model parameters, 

                                                                 

1 Note that RMSE, R2 and AUC values are not comparable across 

studies due to differing datasets.   

2 The R2 statistics for both studies were computed by the authors 

of this paper for consistency. 



of the three attempts studied, model fit varied from an R2 of 

0.1203 to 0.1257.  There had been prior work experimenting with 

different methods of parameter estimation with conflicting results 

about which approach worked better [9, 13].  We find ourselves 

agreeing with the authors of [12] that “It is not yet clear what 

features of a specific data set (and the tutor it comes from) are 

associated with better or worse performance for specific types of 

student models.”  By creating a machine-learned ensemble of 

student models and features, they managed to improve A’ from 

0.705 to 0.769 [12].  This is a definitely large improvement in 

model accuracy, but raises questions of interpretability, which we 

will discuss later in the paper.   

A fair question is why improvements in student model accuracy 

have been so limited? In general, improvements in model 

accuracy have been minimal, particularly given the relatively low 

baseline performances. Improving a model with an R2 of 0.9 is 

challenging, but improving one that starts at an R2 of 0.17 should 

be simpler.  The ideas listed above were sensible, but 

improvements have generally been modest, and often do not 

replicate across data sets.  The results generate two questions: 

1. What is it about this prediction problem that makes it 

difficult?  

2. Is there perhaps a much lower upper limit on model 

accuracy than might otherwise be suspected?  

The motivation for this paper was to explore potential reasons 

behind the inability to create highly accurate models.   

2. CHEATING EXPERIMENTS WITH 

THEORETIC MODELS 
Our first investigation into the plausible performance ceiling of 

student modeling is done using cheating experiments.  The idea of 

a cheating experiment is to test a methodology, simulating some 

non-existent technology as part of it as a means of discovering 

how well a technique would perform if certain limitations are 

removed. The key element of a cheating experiment is relaxing 

certain limitations in scientific knowledge or methodology, but 

not to create an artifact that is too powerful.  For example, for our 

task of predicting student correct next response, one cheating 

experiment would be an algorithm that simply peeks into the 

future, and predicts whatever the student will do.  While this 

approach would certainly be very powerful, it does not give us 

much guidance about limiting factors on performance as the only 

conclusion one could draw would be “a student modeling 

technique that could see the future with perfect accuracy would do 

a very good job.”  Therefore, we focus on more limited, but still 

currently infeasible, extensions of a student model’s capabilities. 

This paper investigates three aspects of student modeling.  First, 

we explore how a student model would do with a perfect detector 

of learning [14].  Second, we investigate how important 

understanding student incoming knowledge is.  Third, we examine 

how a continuous estimate of knowledge would perform.   

Thus, the goal of our analysis is to estimate how well we could 

perform at student modeling if we had a perfect model of several 

aspects of learner cognition.  However, we first give our baseline 

assumptions, then describe our data, and finally provide baseline 

model performance when trained on those data. 

2.1 UNDERLYING ASSUMPTIONS 
We were interested in understanding what factors limit our ability 

to model the student.  One input, typically implicit in student 

modeling research, is the domain model the maps items to skills 

(sometimes called a “Q-matrix”).  This model enables us to map 

student performance on an item to a particular skill in the domain.  

If this aspect of the system is poorly done, model accuracy can 

suffer.  The authors are unaware of any large gains in accuracy by 

refining a “reasonably constructed” transfer model; we add the 

restriction as we are certain that refining a randomly generated 

transfer model would improve accuracy.  Recent work [6] found a 

slight improvement in accuracy from refining models, but the 

effect was not large.  Therefore, we do not consider improvements 

in the transfer model within this paper.   

Furthermore, we assume that we do not know the underlying 

model generating students’ responses. While it is certainly 

possible to make such an assumption and to use, for example, 

knowledge tracing, to generate student responses, such an 

approach assumes far too much, and is of questionable 

applicability to real-world tutoring scenarios.  Therefore, rather 

than generate hypothetical student responses and estimate our 

ability to recover our initial models, we simply use the student 

performance data as provided and compute our predictive 

accuracy.   

2.2 DATA DESCRIPTION AND BASELINE 

MODEL 
For our analyses, we use two datasets. The first is from the 

ASSISTments (www.assistments.org) web-based tutor. These data 

are from 343 eighth-grade students (approximately 13 years old) 

in four classes in urban school districts in the Northeastern United 

States. There were 86,528 first attempts at responding to a 

mathematics problem, and students were correct 64.5% of the 

time. The domain is represented as 104 mathematics skills.  Our 

second dataset is the 2010 KDD Cup dataset, from the Cognitive 

Algebra Tutor.  We used one of the training datasets, and filtered 

out rows with missing values resulting in 607,026 rows of data 

with students correct 75.5% of the time.  These data are from 574 

students working on 158 skills in mathematics.  Although both 

systems involve math skills, they are actually rather different from 

each other.  ASSISTments serves primarily as computer-assisted 

practice for students’ nightly homework and review lessons, while 

the Cognitive Tutor is part of an integrated curriculum and has 

more support for learners during the problem-solving process. 

For our baseline approach, we have selected the Performance 

Factors Analysis (PFA; [7]) model. A PFA model takes the form 

of a logistic regression model, where the independents are the 

number of correct and incorrect responses, and the difficulty of 

the item the student is attempting.  As PFA estimates the impact 

on performance by weighting types of learning opportunities 

differently (correct vs. incorrect responses), it can be seen as a 

variant of learning decomposition [15]. For our data, we have 

found that PFA typically does a better job at predicting [9] the 

data than Bayesian knowledge tracing [8]. Thus it is more 

appropriate as a baseline metric.  For both our baseline approach 

and our cheating models, we represent data separately for each 

student on each skill. Thus, when we discuss successive student 

attempts, we mean successive attempts on the same skill, and 

ignore intervening problems on other skills.   

For performance metrics, we use the Area Under the Curve 

(AUC) and R2.  AUC is an approximation of A’; it is a commonly 

used metric when comparing student modeling techniques.  The 

http://www.assistments.org/


upper limit on AUC is 1.0, and the practical lower limit is 0.53.  

AUC evaluates techniques based on how well they order their 

predictions.  For four problems, if a model predicts that a student 

has a 95%, 90%, 87%, and 86% chance of responding correctly 

and the student gets the first two items correct and the next two 

items incorrect, the AUC will be a perfect 1.0 (assuming a 

threshold of 50% is used, which would be a poor choice in this 

scenario). Even though the model predicts the student is likely to 

get the last two items correct, since those items are relatively less 

likely to be correct than the first two, AUC gives a perfect score.  

R2 is based on the squared error between the predicted and actual 

value, but is normalized relative to the variance in the dataset.  A 

perfect R2 value is 1.0, while 0 is a lower bound for (non-pseudo) 

R2. R2 is similar to Root Mean Squared Error (RMSE), but is 

more interpretable due to the normalization step.  For example, it 

is unclear whether an RMSE of 0.3 is good or bad, perhaps a 

better error could be obtained simply by predicting the mean 

value?  However, an R2 of 0.8 indicates the model is account for 

most of the variability in the data.  For computational simplicity, 

we do not use the pseudo- R2 method such as Nagelkerke in this 

paper. Neither AUC nor R2 is a perfect evaluation metric, but, 

combined; they account for different aspects of model 

performance (relative ordering, and absolute accuracy, 

respectively) and provide us a basis for evaluating our models. 

Table 1 shows performance of the baseline PFA model on both 

the ASSISTments and KDD Cup data.  We can see that the model 

does not fit the KDD Cup data set as well as the ASSISTments 

data. Also, the AUC scores are reasonably high, indicating PFA is 

able to order its predictions relatively well.  However, the lower 

R2 values indicate the magnitude of the errors is still substantial. 

Table 1.  Performance of baseline PFA model 

Data source AUC R2 

ASSISTments 0.745 0.170 

KDD Cup 0.713 0.100 

 

2.3 CHEATING MODEL 1:  A PERFECT 

DETECTOR OF LEARNING AND INITIAL 

KNOWLEDGE 
Our first cheating experiment involves what would be a useful 

piece of technology:  a perfect detector of the moment of student 

learning [14]. When a student is practicing a skill, there is 

hopefully an “aha!” moment where the student has a large jump in 

understanding the skill. This cheating model simulates the ability 

to detect such learning. In addition, the model is also aware of 

whether the students begin using the tutor with knowledge of the 

skill.  Even though it has no data about the student on this skill, it 

can apply its learning detector on the first attempt when the 

student sits down.  This cheating model behaves by examining the 

student’s next response, and if the student will respond correctly, 

this model will mark the student as just learned the skill, and 

predict a correct response.   

However, this model is not permitted to cheat for unlearning or 

forgetting.  For example, if the model believes the student knows 

                                                                 

3 Although technically AUC can be below 0.5, in that case the 

model’s accuracy would be improved, and the resulting AUC 

would be above 0.5, simply by inverting all of its predictions.  

the skill, it will predict a correct response.  If the next response is 

incorrect, it must first make an error on that response by 

predicting correct, and then may reevaluate whether the student 

really knows the skill.  To make this decision, the cheating model 

is permitted to peek ahead at the future student responses and 

decide whether it wants to change its mind about the student’s 

knowledge and mark him as not knowing the skill.   

Although this procedure may sound baroque, there are two 

reasons for it. First, a cheating model that perfectly detected 

learning as well as forgetting would never make a mistake, and 

not produce a useful result. Second, most student modeling 

approaches focus on learning, and ignore the impact of forgetting 

[8] (with a few exceptions, such as [2]).  Since forgetting is often 

caused by interference [16], and it is difficult to know all the 

relevant stimuli to which the student is exposed, this aspect would 

be difficult to model. To be clear, although Cheating Model 1 

(CM1) does not have a perfect detector of forgetting, it is not 

monotonic in its predictions.  That is, when presented with 

evidence the student does not know the skill (i.e., an incorrect 

response), it is permitted to backtrack in its estimate of student 

knowledge.      

For an example of how CM1 performs, see Table 2.  For the first 

item, CM1 is permitted to know whether the student knows the 

skill, and so predicts an incorrect student response. For the second 

item, CM1’s perfect detector of learning enables it to realize the 

student has learned the skill (by peeking ahead at the next 

response), and so it predicts a correct student response. Two items 

later, the student makes a mistake, and as CM1 believes the 

student knows the skill, the model makes an incorrect prediction 

(bold, underlined entry). The model then peeks ahead to 

determine whether it is better to ignore this transient slip, or 

whether it should change its mind about whether the student 

knows the skill.  Since there is a second incorrect response, CM1 

can improve its accuracy by believing the student does not know 

the skill. Thus, CM1 adjusts its predictions to be in best 

accordance with future student data, but is not permitted to predict 

the forgetting before it receives direct evidence. 

Table 2.  Predictions for CM1 and CM2 on sample student 

performance data. Bold underlined entries indicate incorrect 

predictions 

Correct? CM1 CM2i CM2c CM2m 

0 0 0 1 1 

1 1 1 1 1 

1 1 1 1 1 

0 1 1 1 1 

0 0 0 0 0 

1 1 1 1 1 

1 1 1 1 1 

 

For a more formal definition, Figure 1 provides the pseudocode 

for the Cheating Model #1 (CM1). 

On the ASSISTments data, this initial cheating model has an AUC 

of 0.804 and an R2 of 0.50.  On the KDD Cup dataset, it has an 

AUC of 0.762 and R2 of 0.453.  Our cheating model clearly 

outperforms PFA (as it should) on both datasets; AUC is 

increased by 0.5 or 0.6, and R2 by 0.35.   



 

Figure 1.  Pseudocode for Cheating Model 1 (CM1) 

2.4 CHEATING MODEL 2:  WHAT IS THE 

IMPACT OF KNOWING STUDENT 

INCOMING KNOWLEDGE? 
The first cheating experiment provided substantial gains in model 

performance.  However, these gains are a result of two pieces of 

non-existent technology: a perfect detector of learning, and a 

perfect detector of incoming knowledge.  What if we ablate the 

model slightly, and remove its ability to know student incoming 

knowledge?  Thus, our model will retain its ability to detect 

“aha!” moments by the learner, but cannot necessarily correctly 

predict the student’s first attempt.   

To handle imperfect first prediction, we consider three baseline 

models: 

1. A model that assumes the student knows all skills so 

will respond Correctly (CM2c) on first attempts. 

2. A model that assumes the student knows nothing, so 

will respond Incorrectly (CM2i) on first attempts. 

3. A model that assumes the student answers correctly on 

easy items, instantiated as those items that are answered 

correctly a Majority (CM2m) of the time across all 

students. 

Table 2 provides an example of how CM2c, CM2i, and CM2m 

perform relative to CM1.  As can be seen, the only difference is 

on how each of these models predicts the first element.  Since 

CM2c predicts the first response will be correct, it makes an error 

in prediction.  For this example, we have arbitrarily assigned the 

first item a difficulty of 0.4, so since the majority of students get 

this item correct, CM2m predicts the current student will.  For a 

more formal definition, the pseudocode for CM2 can be seen in 

Figure 2 

The impact of prior knowledge for the ASSISTments data may be 

seen in Table 4; assuming the student will respond incorrectly on 

the first attempt is the best (simple) approach for prediction.  For 

the ASSISTments dataset, the drop-off in accuracy is noticeable:  

AUC drops from 0.804 to 0.747, just slightly better than the 

baseline PFA model’s 0.745.  Similarly R2 drops from 0.5 to 

0.239—a very substantial drop, and moderately better than PFA’s 

0.17.  For ASSISTments, understanding student initial knowledge 

is important.   

In the KDD Cup dataset, as can be seen in Table 5, the results 

were broadly similar to those for ASSISTments, with one major 

points of divergence: the impact of understanding student first 

problem performance is much less dramatic.  For the KDD Cup 

data, the AUC only drops from 0.762 to 0.754.  One explanation 

is in this dataset there are relatively more problems solved per 

student per skill.  Within ASSISTments, on average each student 

solves 4.7 problems on each skill he works on.  In the Cognitive 

Algebra Tutor, students practice 19 problems per skill.  Thus, 

since more problems are solved by each student in each skill in 

the Cognitive Algebra Tutor, initial knowledge estimation has a 

smaller impact on accuracy.  ASSISTments is probably on the 

lower end of amount of practice per skills; while the Cognitive 

Tutors, due to the integrated curriculum, is probably on the higher 

end.  Here we see another example of the point made in [12] that 

there is often inconsistency in approaches across datasets.  A 

hypothesis consistent with our data is that a good model of 

incoming student knowledge is more useful in scenarios when 

there are fewer data per skill.  We suspect modeling prior 

knowledge is also more effective when students are more 

heterogeneous; if all students (don’t) know a skill, there is little 

point in modeling their incoming knowledge separately. 

 

Figure 2.  Pseudocode for Cheating Model 2 (CM2) 

2.5 CHEATING MODEL 3:  ESTIMATING 

CONTINUOUS KNOWLEDGE AND 

PERFORMANCE 
The final cheating model takes a clue from CM2m, which bases 

its predictions on item difficulty.  Rather than simply assuming 

that a learner knows a skill or does not, CM3 maintains a degree 

of knowledge for each learner.  Our semantics are that knowledge 



and difficulty are both in the range [0,1].  Larger values represent 

higher degrees of learner knowledge and more difficult items.  If 

item difficulty is less than or equal to knowledge, this model 

maintains the learner will respond correctly.  Otherwise the 

learner will respond incorrectly to the item.  In this manner, it can 

represent a student who can respond correctly to some items 

within a skill, but get other items wrong.  The intuition is that the 

model raises knowledge just high enough to account for student 

correct responses.  On observing an incorrect response, it has the 

option to decrease student knowledge.  The reasoning is similar to 

that for CM1: a model that could increase and decrease 

knowledge estimates at will (before seeing the student’s response) 

would achieve perfect accuracy.  When a student answers an 

incorrect response, it can decrease its knowledge estimate 

arbitrarily low, and will lower it enough to account for later 

incorrect responses.   

Table 3 shows how CM3 performs given the same student 

performance data as before, but also incorporate item difficulty 

information. CM3, like CM1, is permitted to peek ahead on the 

first student performance.  Since the student responds incorrectly, 

the student’s knowledge is set to be just under what is required.  

Since the student responds correctly to the next item, the 

knowledge is increased to 0.7 to be just sufficient.  The student 

responds incorrectly to the next item, but its difficulty is higher 

than the student’s knowledge, so CM3 predicts the student will 

get the item wrong and no update to student knowledge is 

required.  Two items later, the student responds incorrectly to an 

item of difficulty 0.65.  This response causes the model to make a 

mistake as this item is lower than the student’s knowledge of 0.7. 

CM3 responds by decreasing the knowledge, not to .649, but to 

0.599.  The reason is that CM3 looks ahead, and determines what 

level of knowledge will best predict the current streak of incorrect 

responses, and sets knowledge to the maximal level.  Since the 

student gets the next item, with a difficulty of 0.6, incorrect, 

knowledge is set just below that point. A formal definition of 

CM3 is provided in Figure 3. 

Table 3.  Example of predictions and updating knowledge 

estimates for CM3.  Bold underlined entries indicate incorrect 

predictions 

Correct? Item difficulty Prediction Knowledge 

estimate 

0 0.4 0 0.399 

1 0.7 1 0.7 

0 0.8 0 0.7 

1 0.6 1 0.7 

0 0.65 1 0.599 

0 0.6 0 0.599 

1 0.3 1 0.599 

The performance of CM3 on the ASSISTments dataset is seen in 

the first row of Table 4.  CM3, due to its ability to incorporate 

continuous levels of knowledge, is the strongest performer on the 

ASSISTments dataset by a large margin.  Apparently representing 

knowledge as a binary value, even with a model with a perfect 

detector of learning, results in a considerable weakness.  

Representing gradations of student knowledge appears to be much 

more effective.   

The performance of CM3 on the KDD Cup data is seen in the first 

row of Table 5. Again, continuous knowledge resulted in strong 

performance.  For the KDD Cup data, we were a bit stymied as to 

the meaning of “item difficulty”. For these results, we used a 

concatenation of problem name and step name.  However, many 

such pairs were only attempted by 1 student, leading to 

considerable over-fitting. Using just the problem name suffers 

from the problem of underspecificity, and gives an AUC and R2 of 

0.798 and 0.442, respectively. 

Table 4.  Full performance results on ASSISTments data 

 Initial 

knowledge 

Continuous 

knowledge 

AUC R2 

CM3 Known Yes 0.884 0.634 

CM1 Known No 0.804 0.5 

CM2i Assume 

incorrect 

No 0.747 0.239 

PFA   0.745 0.17 

CM2m Based on 

difficulty 

No (except 

first item) 

0.724 0.273 

CM2c Assumed 

correct 

No 0.678 0.266 

 

 

Figure 3.  Pseudocode for Cheating Model 3 (CM3) 

 

 

3. EMPIRICAL CHEATING 

EXPERIMENTS  
In addition to the theoretic cheating experiments, we also examine 

data from recent work [12] on ensembling multiple techniques 

together.  This dataset4 is of interest as it provides the predictions 

of multiple student modeling techniques as a means of estimating 

                                                                 

4 Kindly provided by the paper authors. 



an upper bound on performance.  For this work we focus on four 

approaches to Bayesian knowledge tracing (BKT), and a PFA 

model.  The first two BKT variants use different search techniques 

to estimate the model parameters; the third approach restricts the 

training data to find more relevant cases; the fourth variant 

extends the BKT model by allowing each student to have a 

different level of initial knowledge: 

1. Brute force (BF): estimates model parameters by 

exhaustively searching the set of initial knowledge, 

learning, guess, and slip parameters. 

2. Expectation maximization (EM): finds the model 

parameters that maximize the data likelihood. 

3. Less data (LD): a variant of knowledge tracing that uses 

fewer training data. 

4. Prior per student (PPS): rather than assuming all 

students have the same prior knowledge for a skill, it 

makes initial knowledge conditional on student 

performance. 

 

Table 5.  Full performance results on KDD Cup data 

 Initial 

knowledge 

Continuous 

knowledge 

AUC R2 

CM3 Known Yes 0.887 0.673 

CM1 Known No 0.762 0.453 

CM2i Assume 

incorrect 

No 0.754 0.353 

CM2m Based on 

difficulty 

No (except 

first item) 

0.713 0.357 

PFA   0.713 0.1 

CM2c Assumed 

correct 

No 0.711 0.356 

 

In the original work on ensembling from which these data derive, 

the authors used machine learning approaches to find the best way 

of combining the models’ predictions to create a more accurate 

model.  Instead of that approach, we will consider how a model 

that managed to always select the best base model would do.  

Specifically, we instantiate our model as follows: 

 If student response is correct 

     then prediction = max(BF, EM, LD, PPS, PFA) 

     else prediction = min(BF, EM, LD, PPS, PFA) 

Table 6 provides some sample predictions for the five algorithms 

and shows how our cheating experiment behaves.  For each 

student response, the model selects whichever prediction is 

closest. Unlike the earlier cheating models, this one does not have 

explicit assumptions about learning or initial knowledge, but 

simply picks whichever prediction is closest.  Thus, for the third 

student response, a (perhaps) unexpected incorrect response, this 

approach simply selects the lowest value. In other words, our 

empirical cheating experiment postulates the existence of a perfect 

ensembling approach that always selects the best of its options.   

We computed our model’s predictions across all 178,000 rows in 

the provided dataset.  The performance of our model and baseline 

techniques PFA and KT-LD (best performing of the KT 

techniques [12]) is shown in Table 7.  The empirical cheating 

technique strongly outperformed the baseline techniques, and 

appears to be somewhat better than the best ensembling technique 

found, which had an A’ (approximately equivalent to AUC) of 

0.769. Therefore, there may be room to develop more refined 

ensembling techniques, and discover additional features in order 

to improve predictive accuracy.  We discuss the utility of this line 

of research in the Future Work section.   

Table 6.  Empirical cheating experiment 

Correct? BF EM LD PPS PFA prediction 

0 0.31 0.31 0.31 0.25 0.34 0.25 

1 0.60 0.60 0.59 0.60 0.60 0.60 

0 0.35 0.37 0.37 0.29 0.38 0.29 

1 0.46 0.47 0.47 0.42 0.47 0.47 

1 0.37 0.37 0.37 0.36 0.39 0.39 

 

Table 7.  Performance in empirical cheating experiments 

 AUC R2 

Empirical cheating 0.831 0.324 

PFA 0.706 0.130 

KT-LD 0.701 0.126 

One suggestive item in Table 6 is that it appears that each of the 

student modeling techniques is making fairly similar predictions 

to its competitors.  This phenomenon was also noted when 

comparing techniques on another data set [17].  To test this idea, 

we looked across all 178,000 data points, and found that the five 

student modeling techniques (BF, EM, LS, PPS, and PFA) 

intercorrelated with each other at 0.92 on average.  The prior per 

student (PPS) model was the most idiosyncratic (and the worst 

performing), with an average correlation of 0.85 with the other 

models.  If PPS is removed, the remaining four techniques 

intercorrelated at 0.96, an astonishingly high value. This high 

number is not an artifact of comparing variants of knowledge 

tracing with each other: PFA’s predictions correlates with KT-

LD’s at 0.95.  It should be noted that each of these techniques has 

typically been the subject of multiple papers investigating its 

strengths and weaknesses, and exploring different variations (e.g. 

item- vs. skill-based PFA [5]). However, it appears the major 

story is that all of the techniques are in large-scale agreement with 

each other.   

4. MAIN RESULTS AND LIMITATIONS  
This paper has estimated likely upper bounds on student modeling 

performance. Our approach was to consider the basic cognitive 

factors influencing student performance, and then construct a 

cheating experiment that perfectly models those factors.  On 

ASSISTments data, we found that the ability to perfectly model 

student learning, but imperfect information about prior 

knowledge, led to a model that performed only slightly better than 

a baseline PFA model.  This result is rather surprising.   

The other striking result is that, in spite of being an active 

research area in the EDM, AIED, and ITS communities, 

competing student modeling approaches make remarkably similar 

predictions.  Given the relative closeness of empirical results to 

our cheating models, and the high intercorrelations, a plausible 

conclusion is that the majority of the work in the field of 



predicting next item correctness has been done, and there are not 

large gains in performance remaining to be found.     

The cheating models described in this paper are extremely 

powerful, and examine the basic cognitive inputs to student 

performance.  We are unlikely to get perfect detectors of learning 

any time in the near future.  For student modeling approaches that 

rely on determining when a student has learned, trying to infer 

incoming knowledge, and account for item difficulty, these 

cheating models provide a reasonable upper limit on accuracy.  

However, what of approaches those are not based on cognitive 

principles?  For example, student mistakes could be due to lack of 

knowledge, or could be due to a careless error.  Such careless 

errors appear to be non-random, as such mistakes have been found 

to be associated [18]  with gaming the system [19], and there is 

work on contextual detectors of slip and guess [13].  The potential 

improvement from such work is not accounted for by the analyses 

presented in this paper.   

In addition, approaches such as collaborative filtering [20] 

provide an avenue for non-cognitive approaches to improving 

student modeling.  With collaborative filtering approaches, rather 

than modeling student knowledge explicitly, instead the goal is to 

find similar past students and use their performance to make a 

prediction for the current student (e.g., [21]).   

5. FUTURE DIRECTIONS  
It is unclear how much additional gain there is from refining 

student models to achieve ever higher predictive accuracy.  Many 

promising approaches have resulted in little real-world 

improvement in accuracy.  One drawback is the seductive 

combination of statistical hypothesis testing with increasingly-

large datasets.  It is possible to find statistically reliable results 

corresponding to very small effects.  Even with a relatively small 

dataset of 48,000 item responses, a result with a p-value of 0.002 

resulted in an improvement of less than 0.001 in R2 [22].  While 

larger datasets enable us to estimate such miniscule quantities 

quite precisely (thus, the low p-value), it raises the question of 

whether this result useful in any way? 

We should reflect on why so much effort is being devoted to the 

problem of predicting student next response.  Two candidate 

answers are that’s where the data are, and this task was the goal of 

the 2010 KDD Cup.  Certainly, correctness performance on each 

item for each student is a very vast source of data.  Ten years ago 

that argument would have been a strong rationale, but now there 

are large quantities of educational data of all sorts.  As a thought 

experiment, imagine a research result were published in EDM 

2014 with a new student modeling approach that achieved an A’ 

of 0.9 (comparable to an AUC of 0.9, but A’ has simpler 

semantics).  Effectively that would mean that given a correct and 

an incorrect student response, this student model could determine 

which was which 90% of the time. Such an accomplishment 

would be a major step forward in our capabilities.  But, what 

would we actually do with the model? This question is non-

rhetorical, as the authors do not have a good answer.  To be clear, 

there are plenty of useful problems our student models could 

address, such as the probability of a student receiving an “A” in 

the course, or whether he is ready to move and learn subsequent 

material.  

Ironically, as a field we have settled on a common test problem 

that has little impact on tutorial decision making or on informing 

the science of learning.  We got to this point for good reasons.  

Student modeling in ITS is primarily about the estimation of 

student knowledge. In addition to plentiful data at the item 

response level, one natural method of validating [23] an 

instrument is to compute its predictive validity.  That is, how well 

does the measure correlate with things the construct should 

correlate with.  If our model of student knowledge is a good one, 

it should have a high correlation with student performance on 

items.  Thus, from an instrumentation standpoint our scientific 

approach is reasonable.   

However, while showing that a measure has a high correlation is a 

necessary condition in validating a measure, it is never a sufficient 

condition [23].  In other words, constructing a student model with 

a higher predictive accuracy is not sufficient to create a better 

estimate of the student’s knowledge.  As a concrete example, 

consider ensembling methods, which consider the outputs of 

different student modeling approaches, and finds a means to 

combine their predictions with additional features to better predict 

student performance.  Such approaches are in fact successful at 

noticeably raising the bar (e.g. [12]).  However, is there any 

interpretable component relating to student knowledge?  Can we 

use this model to predict whether an intervention will lead to 

more learning?  If not, then what do we do with the model? 

To be clear, this paper does not assert that the field of student 

modeling is completed.  Rather, it makes a more modest claim:  

the research thread of predicting next item correctness is 

approaching limits to accuracy, and has probably progressed 

beyond a useful point.  However, there remain several interesting, 

known problems in student modeling that can inform us about 

student learning, and have a clear correspondence to improving 

tutorial decision making.   

First, consider the robust learning framework of the Pittsburgh 

Science of Learning Center.  The components of robust learning 

are preparation for future learning (of related skills), transfer to 

novel contexts, and retention.  Constructing a detector of the first 

two components of robust learning (e.g., [24]) is a worthwhile 

modeling goal.  Other work has focused on predicting the third 

component, retention (e.g., [25]).   

As a second example, work on the optimal interval to wait before 

presenting an item on the same skill would be useful.  Items 

presented to close together temporally waste time on repetitive 

practice; too far apart risks having the student forget and having to 

relearn [26].  However, such intervals vary by student and skill.  

This problem can be seen as the complement of retention: how 

long can we wait before risking the student will forget the item? 

As a third example, detectors of student behaviors that are out of 

bounds of our simplified model of the learner are a useful avenue 

to explore.  Our model is that students are attempting to solve 

problems, and as a result are learning a little bit each time.  But 

what if the student is bored [27] or frustrated and discouraged 

[28]?  A recent example of such a detector is wheel-spinning [29], 

named after how a student spins his wheels and goes through the 

motions of learning, but learning repeatedly does not occur.  

Detecting and suggesting remediation for, such problems is an 

interesting third avenue to explore.   
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